|Table of Contents|

Algorithm for Feedback Stability of Singular System


Research Field:
Publishing date:


Algorithm for Feedback Stability of Singular System
LIU Feng1SHI Guo-dong2
1. School of Mathematics and Physics, Jiangsu Teachers University of Technology,Changzhou 213001,China; 2. School of Information Science and Engineering,Changzhou University,Changzhou 213164,China
singular system feedback stability sub-negative definite matrix generalized left inverse
TP13; O175
Aiming at the problem of the feedback stability of a singular system, this paper gives an algorithm to solve this problem by using sub-negative definite matrix and generalized left inverse of matrix. The closed loop system of singular system is obtained by introducing the state feedback law; the solution of the closed loop system is obtained; the matrix in exponent of the solution of the closed loop system is let equal to a sub-negative definite matrix, then the feedback matrix which makes the singular system stable can be obtained. An example is given for the application of the method.


[1] Joder L,Femandez M L. An implicit difference method for the numerical solution of coupled system of partial differential equations[J]. Appl Math Comput, 1991, 46 ( 1) : 127-134.
[2] Lewis F L. A review of 2-D implicit systems[J]. Automatic, 1992, 28( 2) : 345-354.
[3] Trzaska Z,Marszalek W. Singular distributed parameter systems[J]. IEEE Control Theory and Applications, 1993, 40( 5) : 305-308.
[4] Ge Zhaoqiang,Zhu Guangtian,Ma Yonghao. Pole assignment for the first order coupled generalized control system[J]. 控制理论与应用, 2000, 17( 3) : 379-383.
[5] 王康宁,吕涛,邹振宇. 分布参数控制系统的极点配 置问题[J]. 中国科学A 辑, 1982, 12( 2) : 172-184.
[6] 葛照强,马勇镐. 一阶广义分布参数系统的极点配 置[J]. 数学年刊A 辑, 2001, 22( 1) : 729-734.
[7] Shi Guodong,Liu Feng. Stability by feedback of the first order singular distributed parameter control systems containing infinite non-negative real part poles [A]. Proceedings of the 7th Asian Control Conference ( ASCC2009,Hong Kong) [C]. New York: IEEE Computer Society, 2009: 1416-1419.
[8] Liu Feng,Shi Guodong,Ge Zhaoqiang. Asymptotical stability for singular control systems with minimized norm state feedback[A]. Proceedings of the 3rd IEEE International Conference on Computer Science and Information Technology ( ICCSIT 2010,Chengdu) [C]. New York: IEEE, 2010: 33-36.
[9] Liu Feng,Shi Guodong. Uniform exponential stability of the time varying singular distributed parameter systems in Hilbert space[A]. Proceeding of the 29th Chinese Control Conference ( CCC2010,Beijing) [C]. New York: IEEE Press, 2010: 5784-5788.
[10] Ge Zhaoqiang,Zhu Guangtian,Feng Dexing. On the stabilization by feedback of the second order singular distributed parameter control systems[J]. Dynamics of Continuous,Discrete and Impulsive Systems Series BApplications & Algorithms, 2006, 13( 1) : 116-120.
[11] 屠伯埙. 亚正定阵理论( Ⅰ) [J]. 数学学报, 1990, 33 ( 4) : 462-471.
[12] 屠伯埙. 亚正定阵理论( Ⅱ) [J]. 数学学报, 1991, 34 ( 1) : 91-102.
[13] 史国栋,沃松林,邹云. 一类关联时滞广义大系统的 稳定性与分散镇定[J]. 南京理工大学学报,2006, 30( 1) : 70-75.
[14] 刘锋,葛照强. Hilbert 空间中二阶广义分布参数系 统的反馈控制与极点配置[J]. 系统科学与数学, 2008, 28( 3) : 257-264.
[15] 刘锋,葛照强. 一类二阶广义控制系统的反馈控制 与极点配置[J]. 数学进展, 2008, 37( 6) : 683-689.


Last Update: 2012-10-23