|Table of Contents|

Normalized-generalized Sidelobe Canceller in Impulsive Noise


Research Field:
Publishing date:


Normalized-generalized Sidelobe Canceller in Impulsive Noise
LI Hong-tao1GU Chen1ZHU Xiao-hua1HU Wen2
1. School of Electronic Engineering and Optoelectronic Technology,NUST,Nanjing 210094,China; 2. College of Information Science and Technology,Nanjing University of Aeronautics and Astronautics, Nanjing 210016,China
array signal processing generalized sidelobe cancellers fractional lower order moments impulsive noises
TN911. 7
To solve the performance degradation of a beamformer in impulsive noises,a new normalized- generalized sidelobe canceller ( N-GSC) algorithm is presented for the heavy-tailed impulsive noises of arbitrary unknown statistics. The second-order statistical entity of input signal is made exist and finite by infinity-norm normalizing the input signal,and the input signal is filtered by wiener filter to improve the performance of the beamformer amid heavy-tailed impulsive noise of unknown statistics. The simulation results of four impulsive noises show that,compared with the GSC and the fractional lower order moments based GSC algorithm, the N-GSC algorithm does not need any prior information and estimation of the impulsive noise characteristic exponents, is easy for calculation and suitable for wider heavy-tailed impulsive noises, and can offer better interference-rejection.


[1] Kannan B,Fitzgerald W J. Beamforming in additive α- stable noise using fractional lower statistics ( FLOS) [A]. IEEE International Conference on Electronics, Circuits and Systems[C]. Pafos,Cyprus: IEEE,1999: 1755-1758.
[2] Taskalides P,Nikias C L. Robust space-time adaptive processing ( STAP ) in non-Gaussian clutter environments[J]. IEE Proceedings-Radar,Sonar,Navigation, 1999, 146( 2) : 84-93.
[3] 何劲,刘中. 脉冲噪声环境中稳健的自适应波束形 成算法[J]. 电子学报, 2006, 34( 3) : 464-468.
[4] He J,Liu Z,Wong K T. Linearly constrained minimum- “Geometric Power”adaptive beamforming using logarithmic moments of data containing heavy-tailed noise of unknown statistics[J]. IEEE Antennas and Wireless Propagation Letters, 2007,6 : 600-603.
[5] 何劲,刘中. 冲击噪声环境中最小“几何功率”误差波 束形成算法[J]. 电子学报, 2008, 36( 3) : 510-515.
[6] 顾陈,何劲,朱晓华. 冲击噪声背景下基于最小均方 归一化误差的波束形成算法[J]. 电子学报,2010, 38( 6) : 1430-1433.
[7] He J,Liu Z. Linearly constrained minimum—‘normalised variance’beamforming against heavy-tailed impulsive noise of unknown statistics[J]. IET Radar,Sonar and Navigation, 2008,2 ( 6) : 449-457.
[8] 顾陈,何劲,王克让,等. 任意分布冲击噪声背景下 基于ESPRIT 的DOA 估计方法[J]. 南京理工大学 学报, 2009, 33( 6) : 785-789.
[9] Reed I S,Mallat J D,Brennan L E. Rapid convergence rate in adaptive arrays[J]. IEEE Transactions on Aerospace Electronic Systems, 1974, 10( 6) : 853-863.


Last Update: 2012-10-24