|Table of Contents|

Effects of Solution on Structure and Morphology of Polypropylene Membrane in Membrane Absorption Process

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2011年05期
Page:
726-730
Research Field:
Publishing date:

Info

Title:
Effects of Solution on Structure and Morphology of Polypropylene Membrane in Membrane Absorption Process
Author(s):
LU Jian-gangHUA Ai-chunLIU Shi-xinLIU CongFAN Fan
School of Environmental Science and Engineering,Nanjing University of Information Science and Technology,Nanjing 210044,China
Keywords:
polypropylene micropore membrane membrane absorption solution membrane structure membrane morphology
PACS:
TQ028. 17
DOI:
-
Abstract:
In order to study the effects of solutions on structure and morphology of polypropylene membrane in natural solution surroundings,aqueous monoethanolamine( MEA) ,aqueous potassium glycinate( GLY) ,aqueous potassium hydroxide( KOH) and water are selected to test the changes of surface structure and morphology of polypropylene( PP) membrane in the solutions and water surroundings by using the micro-weighing, scanning electron microscope( SEM) infrared spectrum( IR) and dipping method. Effects of species and concentrations of the solutions and dipping time on swelling rate,configuration and surface chemical composition of PP membrane are studied. The results show that the three solutions significantly influence the swelling rates of PP membrane. Effect of MEA on the swelling rate is the largest and that of water is the smallest. The effect order is: MEA>GLY> KOH>H2O. Effect of MEA concentration on the swelling rate rapidly increases and then decreases with the increase of the concentration. The results of SEM indicate that MEA solution makes membrane micropore sizes enlarge obviously. Effects of GLY and KOH solutions on micropore sizes are smaller. The longer the dipping time, the larger the effects are. The results of IR demonstrate that changes of surface properties of the membrane are the greatest in the MEA solution and the changes in amide solution are larger than that in hydroxyl solution.

References:

[1] Gabelman A S,Hwang T. Hollow fiber membrane contactors [J]. J Membr Sci, 1999, 159( 1-2) : 61-106.
[2] Lia L L,Chen B H. Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors [J]. Sep Purif Technol, 2005, 41( 2) : 109-122.
[3] Zhang Q,Cussler E L. Microporous hollow fibers for gas absorption[J]. J Membr Sci, 1985, 23( 1) : 321-345.
[4] Kumar P S,Hogendoorn J A,Feron P H M, et al. New absorption liquids for the removal of CO2 from dilute gas streams using membrane contactors[J]. Chem Eng Sci, 2002, 57( 9) : 1639-1651.
[5] Lu J G,Zheng Y F,Cheng M D. Wetting mechanism in mass transfer process of hydrophobic membrane gas absorption [J]. J Membr Sci, 2008, 308( 1-2) : 180-190.
[6] Lu J G,Zheng Y F,Cheng M D, et al. Effects of activators on mass transfer enhancement in a hollow fiber contactor using activated alkanolamine solutions[J]. J Membr Sei, 2007, 289( 1) : 138-149.
[7] Dindore V Y,Brilman D W F,Feron P H M,et al. Membrane-solvent selection for CO2 removal using membrane gas-liquid contactors[J]. J Membr Sci, 2004, 235( 1-2) : 99-109.
[8] Atchariyawut S,Feng C,Wang R, et al. Effect of membrane structure on mass-transfer in the membrane gasliquid contacting process using microporous PVDF hollow fibers [J]. J Membr Sci,2006,285 ( 1 - 2 ) : 272-281.
[9] Lu J G,Wang L J,Sun X Y,et al. Absorption of CO2 into aqueous solutions of methyldiethanolamine and activated methyldiethanolamine from a gas mixture in a hollow fiber contactor[J]. Ind Eng Chem Res, 2005, 44 ( 24) : 9230-9238.
[10] Garcia-Payo M C,Izquierdo-Gil M A,Fernandez- Pineda C. Wetting study of hydrophobic membranes via liquid entry pressure measurements with aqueous alcohol solutions[J]. J Colloid Interface Sci, 2000, 230 ( 2) : 420-431.
[11] Zheng Q S,Yu Y,Zhao Z H. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces [J]. Langmuir,2005,21 ( 26) : 12207-12212.
[12] 陆建刚,王连军,刘晓东,等. 湿润率对疏水性膜接 触器传质性能的影响[J]. 高等学校化学学报, 2005, 26( 5) : 912-917.
[13] Barbe A M,Hogan P A,Johnson R A. Surface morphology changes during initial usage of hydrophobic, microporous polypropylene membranes[J]. J Membr Sci, 2000, 172( 1-2) : 149-156.
[14] 陆建刚,王连军,刘晓东,等. 膜基复合溶液吸收CO2 过程模拟[J]. 化工学报, 2005, 56( 8) : 1439-1444.
[15] 陆建刚,马骏,王连军. 混合气中CO2 的膜接触器分离 过程[J]. 南京理工大学学报, 2005, 29( 4) : 491-194.
[16] Godjevargova T,Gabrovska K. Immobilization of urease onto chemically modified acrylonitrile copolymer membranes [J]. J Biotechnol, 2003, 103( 2) : 107-111.
[17] Musale M A,Kumar A J. Solvent and pH resistance of surface crosslinked chitosan /poly ( acrylonitrile) composite nanofiltration membranes[J]. J Appl Polym Sci, 2000, 77( 8) : 1782-1793.
[18] Picchioni F,Goosens J G P,Van D M, et al. Solid-state modification of isotactic polypropylene ( iPP ) via grafting of styrene[J]. J Appl Polym Sci,2003,89 ( 2) : 3279-3291.
[19] 安秋凤,王前进,路德待,等. 聚醚/二苯甲酮侧基聚 硅氧烷的膜形貌及亲疏水行为[J]. 高分子材料科 学与工程, 2008, 24( 1) : 83-86.
[20] Kumar P S,Hogendoorn J A,Feron P H M, et al. New absorption liquids for the removal of CO2 from dilute gas streams using membrane contactors[J]. Chem Eng Sci, 2002, 57( 9) : 1639-1651.
[21] 陆建刚,陈敏东,徐建强,等. 溶液环境中疏水性聚 丙烯膜结构性能的变化[J]. 南京理工大学学报, 2009, 33( 6) : 820-823.

Memo

Memo:
-
Last Update: 2012-10-24