|Table of Contents|

Salt and Pepper Noise Removal Algorithm Based on Neighbourhood Mean

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2011年06期
Page:
764-767
Research Field:
Publishing date:

Info

Title:
Salt and Pepper Noise Removal Algorithm Based on Neighbourhood Mean
Author(s):
HE Yi-mingZHANG Gang-bingQIAN Xian-yi
School of Electronic Information & Electric Engineering,Changzhou Institute of Technology, Changzhou 213002,China
Keywords:
salt and pepper noise neighbourhood mean image noise removal filter maximum-minimum principle peak signal-to-noise ratio
PACS:
TP391. 41
DOI:
-
Abstract:
To improve the image effect,a filter algorithm for image noise removal suitable for salt and pepper noise is proposed based on the correlation of the neighbourhood. The pixels contaminated by salt and pepper noise are detected by using the maximum-minimum principle. Eight pixels near the contaminated one are divided into two classes according to their distances. The gray value of contaminated pixel is reconstructed by the mean of those uncontaminated pixels with near distance. The gray value of contaminated pixel is reconstructed by the mean of those uncontaminated pixels with far distance if all the pixels with near distance are contaminated. Computer simulation results show that the proposed algorithm with superior peak signal-to-noise ratio can restrain the noise and preserve the detailed information of images.

References:

[1] 郑峰,张宏超,陆建. 激光等离子体干涉条纹的图像 处理方法研究[J]. 南京理工大学学报,2009, 33( 5) : 668-671.
[2] 封晓强,何铁军. 基于量子进化算法的交通图像稀疏 分解[J]. 南京理工大学学报, 2010, 34( 1) : 40-45.
[3] Russo F. Noise removal from image data using recursive neurofuzzy filter[J]. IEEE Trans Instrum Means, 2000, 49( 2) : 307-341.
[4] Eng H L,Ma K K. Noise adaptive soft-switching median filter[J]. IEEE Trans Image Process, 2001, 10( 2) : 242 -251.
[5] Ko S J,Lee S J. Center weighted median filters and their applications to image enhancement[J]. IEEE Trans Circuits System, 1991, 15( 9) : 984-993.
[6] Wang J H,Liu W J,Lin L D. Histogram-based fuzzy filter for image restoration[J]. IEEE Trans Sytem,Cybern B, 2002, 32( 2) : 230-238.
[7] Wang Junhua,Lin lianda. Improved median filter using minmax algorithm for image processing[J]. Electronics Letters, 1997, 33( 16) : 1362-1363.
[8] Wang Zhou,David Zhang. Progressive switching median filter for the removal of impulse noise from highly corrupted images[J]. IEEE Transactions on Circuits and System,Ⅱ: Analog and Digital Signal Processing,1999, 46( 1) , 78-80.
[9] 曲延峰,徐健,李卫军. 有效去除图像中脉冲噪声的 新型滤波算法[J]. 计算机辅助设计与图形学学报, 2003, 15( 4) : 397-401.
[10] 王博,潘泉. 基于相关度量的高椒盐噪声软阈值直方 图滤波算法[J]. 电子学报, 2007, 35( 7) : 1347-1351.
[11] 王暄,毕秀丽,马建峰. 基于二次噪声检测和细节保 护规则函数的图像滤波算法[J]. 电子学报,2008, 36( 2) : 381-385.
[12] 宋宇,李满天,孙立宁. 基于相似度函数的图像椒盐 噪声自适应滤除算法[J]. 自动化学报,2007,33 ( 5) : 474-479.
[13] 秦鹏,丁润涛. 一种基于排序阈值的开关中值滤波 方法[J]. 中国图象图形学报, 2004,9 ( 4) : 412-416
[14] 满利红,王士同. 彩色图像脉冲噪声的模糊检测和滤 波[J]. 计算机应用研究, 2009, 26( 3) : 1198-1200.
[15] 王双双,王士同,李柯材. 基于加权检测的脉冲噪声新 滤波器[J]. 计算机应用, 2010, 30( 10) : 2815-2818.
[16] Stefan S,Mike N,Valerie W D,et al. A fuzzy impulse noise detection and reduction method[J]. IEEE Trans on Image Processing, 2006, 15( 5) : 1153-1162.
[17] Luo Wenbin. Efficient removal of impulse noise from digital images[J]. IEEE Transactions on Consumer Electronics, 2006, 52( 2) : 523-527.

Memo

Memo:
-
Last Update: 2012-10-25