|Table of Contents|

Fuzzy Interpolation Algorithm and Realization of Preisach Model for Piezo Actuator

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2011年06期
Page:
780-785
Research Field:
Publishing date:

Info

Title:
Fuzzy Interpolation Algorithm and Realization of Preisach Model for Piezo Actuator
Author(s):
ZHANG Jian-huaGE Hong-yuLI Hong-shengFANG Li
School of Automation,Nanjing Institute of Technology,Nanjing 211167,China
Keywords:
piezo actuator fuzzy interpolation hysteresis traditional interpolation
PACS:
TP273. 4
DOI:
-
Abstract:
To achieve a hysteresis modeling method with ideal computational complexity, velocity and accuracy for real-time control of micro precision motion,a new fuzzy interpolation algorithm is proposed. According to the geometrical characteristics of hysteretic characteristic curves for piezo actuators, the curves are classified into two categories of convex section and notching section. The fuzzy interpolation methods of the two kinds of curves are proposed using the ideal outputs of the fuzzy interpolation simulation curves for four neighboring divided points. A fuzzy interpolation algorithm of Preisach model is developed by calculating displacement variations with the above-mentioned methods. The algorithm is done by standard C Language and the contrast test is done by using an experimental platform of ARM processor Samsung S3C2410. The results show that the error and the standard deviation of the traditional interpolation algorithm are from -0. 512 μm to 0. 073 μm and 0. 184, and those of the fuzzy algorithm are from -0. 347 μm to 0. 094 μm and 0. 139. The algorithm is fit for the real-time precision control of embedded processors.

References:

[1] 曲东升,荣伟彬,孙立宁,等. 压电陶瓷微位移器件 控制模型的研究[J]. 光学精密工程,2002,10( 6) : 602-607.
[2] Janaideh M A,Rakheja S,Su C Y. Experimental characterization and modeling of rate-dependent hysteresis of a piezoceramic actuator[J]. Mechatronics,2007,19 ( 5) : 656-670.
[3] Dong R,Tan Y,Chen H, et al. A neural networks based model for rate-dependent hysteresis for piezoceramic actuators [J]. Sensors and Actuators A: Physical, 2008, 143( 2) : 370-376.
[4] Dang X,Tan Y. RBF neural networks hysteresis modelling for piezoceramic actuator using hybrid model[J]. Mechanical Systems and Signal Processing,2007,21 ( 1) : 430-440.
[5] Yu Y,Xiao Z C,Naganathan N G, et al. Dynamic Preisach modeling of hysteresis for the piezoceramic actuator system[J]. Mechanism and Machine Theory, 2002, 37( 1) : 75-89.
[6] Salvini A,Fulginei F R. Genetic algorithms and neural networks generalizing the Jiles-Atherton model of static hysteresis for dynamic loops[J]. IEEE Transactions on Magnetics, 2002, 38( 2) : 873-876.
[7] 党选举,谭永红. 基于灰色理论的压电陶瓷迟滞特 性的神经网络建模研究[J]. 仪器仪表学报,2005, 26( 9) : 913-916.
[8] Zhao X,Tan Y. Neural network based identification of Preisach-type hysteresis in piezoelectric actuator using hysteretic operator[J]. Sensors and Actuators A: Physical, 2006, 126( 2) : 306-311.
[9] 刘向东,修春波,李黎,等. 迟滞非线性系统的神经 网络建模[J]. 压电与声光, 2007, 29( 1) : 106-108.
[10] 刘向东,修春波,刘承,等. 基于混沌神经网络的压 电陶瓷迟滞模型[J]. 北京理工大学学报,2006,26 ( 2) : 235-138.
[11] Kyoung K A,Nguyen B K. Internal model control for shape memory alloy actuators using fuzzy based Preisach model [J]. Sensors and Actuators A: Physical, 2007, 136( 2) : 730-741.
[12] Kyoung K A,Nguyen B K. Modeling and control of shape memory alloy actuators using Preisach model, genetic algorithm and fuzzy logic [J]. Mechatronics, 2008, 18( 3) : 141-152.
[13] Wang Y,Ying Z G,Zhu W Q. Nonlinear stochastic optimal control of Preisach hysteretic systems[J]. Probabilistic Engineering Mechanics,2009,24 ( 3 ) : 255 -264.
[14] 魏燕定,陶惠丰. 压电驱动器迟滞特性的Preisach 模型研究[J]. 压电与声光, 2004, 26( 5) : 364-367.

Memo

Memo:
-
Last Update: 2012-10-25