|Table of Contents|

Feature Difference Based Image Segmentation Algorithm for Fluorescent Magnetic Detection

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2011年06期
Page:
797-800
Research Field:
Publishing date:

Info

Title:
Feature Difference Based Image Segmentation Algorithm for Fluorescent Magnetic Detection
Author(s):
LU Bao-chun1LI Jian-wen1WANG Jing1FENG Yi1LI Chun-jian2
1. School of Mechanical Engineering,NUST,Nanjing 210094,China; 2. Shengjieda NDT Device Manufacturing Co. ,Ltd. ,Yancheng 224300,China
Keywords:
fluorescent magnetic detection image segmentation gradient method threshold method gray feature
PACS:
TG115. 28
DOI:
-
Abstract:
To segment false information and target information efficiently,a new image segmentation algorithm for fluorescent magnetic detection is proposed based on gradient method and threshold method. The image segmentation algorithm is designed by taking the gradient differences between target information and false information as the main criterion. The information most close to the target information on gray feature is filtered out,and the target information is extracted by combining with the threshold method. Gradient features are selected as main segmentation criteria,which makes up the poor generality of simple threshold method. The algorithm is debugged in the VC program integrated with OpenCV. The testing results show: the gradient differences between the target information and the false information are significant; after the false information with high-gradient is removed, the gradient features between the target information and the background information are significant, the target information is easy to be extracted by combining with threshold method.

References:

[1] 中国机械工程学会无损检测学会. 磁粉探伤[M]. 北京: 机械工业出版社, 2005.
[2] 陆宝春,李建文,陈吉朋,等. 荧光磁粉探伤自动缺 陷识别方法研究[J]. 南京理工大学学报,2010, 34( 6) : 803-808.
[3] 张强,霍凯. 轴承荧光磁粉探伤自动识别技术的研 究[J]. 现代电子技术, 2009, 32( 7) : 107-110.
[4] Bruce F, Jeff S. Photoshop CS3 camera raw 完全剖析 [M]. 北京: 人民邮电出版社, 2009.
[5] Bakunov A S,Korolev A Y,Kudryavtsev D A, et al. A set of magnetic fluorescent-penetrant inspection[J]. Russian Journal of Nondestructive Testing,2005,41 ( 3) : 170-174.
[6] Rafael C G,Richard E W. Digital image processing [M]. London,England: Prentice Hall, 2006.
[7] 张玉珍,王建宇,戴跃伟. 基于自适应双阈值和主色 率的足球视频镜头的分割[J]. 南京理工大学学报, 2009, 33( 4) : 432-437.
[8] 李峰,徐诚,任国全,等. 基于数学形态学的铁谱磨 粒图像分割研究[J]. 南京理工大学学报,2005, 29( 1) : 70-72.
[9] 陆建峰,杨静宇,叶玉坤. 一个用于彩色肺癌细胞图 像的分割算法[J]. 南京理工大学学报,2000, 24( 6) : 481-485.
[10] Gray B,Adrian K. Learning OpenCV[M]. Frankfort, Germany: O’Reilly Media, Inc, 2009.

Memo

Memo:
-
Last Update: 2012-10-25