|Table of Contents|

Design and Realization of Feedback-type Giant Magneto-impedance Micro-magnetic Sensor

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2011年06期
Page:
801-804
Research Field:
Publishing date:

Info

Title:
Design and Realization of Feedback-type Giant Magneto-impedance Micro-magnetic Sensor
Author(s):
BU Xiong-zhuZHAO WenYU Ge-liangLI Yun-long
School of Mechanical Engineering,NUST,Nanjing 210094,China
Keywords:
giant magneto-impedance micro-magnetics sensors negative feedback linearity index drift cutoff frequency
PACS:
TP212
DOI:
-
Abstract:
To improve the performance of a micro-magnetic sensor based on the giant magneto-impedance( GMI) effect, the GMI characteristic of Fe-based amorphous ribbon under longitudinal excitation is researched. A sensor feedback model is established and analyzed. A feedback-type GMI micromagnetic sensor is designed. The excitation circuit is composed of complementary metal-oxide-semiconductor( CMOS) coupling reactor. The conditional circuit is composed of peak value detection circuit, low-pass filter circuit,difference amplifier and voltage follower. The feedback circuit is composed of instrumentation amplifier, low-pass filter circuit, resistor and inductor. Contrast tests are processed with or without feedback by a calibration system composed of Helmholtz coil and constantcurrent power. The results show that: with the external magnetic field strength of -2. 5 ~ 2. 5 Oe, the linearity index of the feedback-type GMI micro-magnetic sensor is improved by 41% compared with the GMI micro-magnetic sensor without feedback; the sensor drift is 10 ~ 20 mV/h without feedback and 2 mV/h with feedback without external magnetic field; when the external magnetic field strength is 2. 5 Oe, the drift is 3 mV/h; the cutoff frequency of the sensor is 2 kHz without feedback and above 4 kHz with feedback.

References:

[1] Mohri K,Kohzawa T,Kawashima K,et al. Magnetoinductive effect( MI effect) in amorphous wires[J]. IEEE Transactions on Magnetics, 1992, 28( 5) : 3150-3152.
[2] Mohri K,Uchiyama T,Shen L P, et al. Amorphous wire and CMOS IC-based sensitive micro-magnetic sensors ( MI sensor and SI sensor) for intelligent measurements and controls[J]. Magnetism and Magnetic Materials, 2002, 249( 1) : 351-356.
[3] Mohri K,Uchiyama T,Shen L P, et al. Amorphous wire and CMOS IC-based sensitive micro-magnetic sensors utilizing magneto-impedance ( MI) and stress-impedance ( SI) effects[J]. IEEE Transactions on Magnetics, 2002, 38( 5) : 3063-3068.
[4] Cai C M,Usami K,Hayashi M, et al. Frequency-modulation- type MI sensor using amorphous wire and CMOS inverter multivibrator[J]. IEEE Transactions on Magnetics, 2004, 40( 1) : 161-163.
[5] Nakamura Y,Uchiyama T,Cai C M, et al. PWM-type amorphous wire CMOS IC magneto-impedance sensor having high-temperature stability[J]. IEEE Transactions on Magnetics, 2008, 44( 11) : 3981-3984.
[6] 郑金菊,余水宝,孙笑琴. 一种新型的磁敏传感器 [J]. 仪器仪表学报, 2005, 26( 8) : 308-309.
[7] 林继鹏,王君,凌振宝,等. 基于非晶态合金的感应 式磁敏传感器的研究[J]. 仪器仪表学报,2004,25 ( 2) : 195-197, 211.
[8] 陈世元,张亮,李德仁,等. 基于巨磁阻抗效应的新 型高灵敏度磁敏传感器[J]. 磁性材料及器件, 2007, 38( 3) : 46-49.
[9] 吴志明,杨燮龙,杨介信,等. 一种新型的纳米巨磁阻抗 磁敏传感器[J]. 功能材料, 2004, 35( 增刊) : 2965-2967.
[10] 蒋颜玮,房建成,黄学功,等. 巨磁阻抗传感器敏感 材料的选择[J]. 功能材料, 2009, 40( 1) : 1-6.
[11] Yu Geliang,Bu Xiongzhu,Xiang Chao, et al. Design of a GMI magnetic sensor based on longitudinal excitation [J]. Sensors and Actuators A, 2010, 161( 1) : 72-77.

Memo

Memo:
-
Last Update: 2012-10-25