|Table of Contents|

Numerical Simulation of Shock-induced Bubble Collapse

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2011年06期
Page:
811-816
Research Field:
Publishing date:

Info

Title:
Numerical Simulation of Shock-induced Bubble Collapse
Author(s):
DENG Shu-shengTAN Jun-jie
School of Energy and Power Engineering,NUST,Nanjing 210094,China
Keywords:
shock bubble collapse compressible multi-medium flow modified ghost fluid method arbitrary Lagrangian-Eulerian method
PACS:
O35
DOI:
-
Abstract:
To simulate the dramatic changes of the material interface in compressible multi-medium flow, the mesh distortion and topology changes induced by the motion of the material interface are dealt with by using developed unstructured moving grids generation approach with large-scale deformation and topological changes. Lagrange interface is constructed by Riemann solver for tracking the multi-medium interface explicitly. Modified ghost fluid method is adopted to construct the boundary conditions of the material interface,and conservative arbitrary Lagrangian-Eulerian formulas are solved in each medial relatively. The collapse of the cylindrical helium bubble in air and the 2D air cavity in water induced by shock is simulated. The results indicate that the interface tracking method for multi-medium flow based on unstructured moving grids developed here is effective to handle the topological changes induced by the interface.

References:

[1] Haas J. Interaction of weak shock waves and discrete gas inhomogeneities[D]. California,USA: Aeronautics Department,California Institute of Technology,1984: 97-102.
[2] Hu X Y,Khoo B C. An interface interaction method for compressible multifluids[J]. Journal of Computational Physics, 2004, 198( 1) : 35-64.
[3] Bourne N K,Field J E. Shock-induced collapse of single cavities in liquids[J]. Journal of Fluid Mechanics, 1992, 244( 11) : 225-240.
[4] Ball G J,Howell B P,Leighton T G,et al. Shockinduced collapse of a cylinderical air cavity in water: A free-Largrange simulation [J]. Shock Waves,2000, 10( 4) : 265-276.
[5] Fedkiw R P,Aslam T,Merriman B, et al. A non-oscillatory Eulerian approach to interfaces in multimaterial flows( the ghost fluid method) [J]. Journal of Computational Physics, 1999, 152( 2) : 457-492.
[6] Liu T G. Ghost fluid method for strong shock impacting on material interface[J]. Journal of Computational Physics, 2003, 190( 2) : 651-681.
[7] Liu T G. The ghost fluid method for compressible gaswater simulation [J ]. Journal of Computational Physics, 2005, 204( 1) : 193-221.
[8] Dukowicz J K. A general,non-iterative Riemann solver for Godunov’s method[J]. Journal of Computational Physics, 1985, 61( 1) : 119-137.
[9] 邓树升,耿继辉,叶经方,等. 含运动变形物体流场 的数值模拟[J]. 计算物理, 2009, 26( 2) : 200-210.
[10] Yang Z,Mavriplis D J. Higher-order time integration schemes for aeroelastic applications on unstructured meshes[J]. AIAA Journal, 2007, 45( 1) : 138-150.
[11] Marquina A,Mulet P. A flux-split algorithm applied to conservative models for multicomponent compressible flows[J]. Journal of Computational Physics, 2003, 185 ( 2) : 120-138.
[12] 王兵,司海青. 时刻追踪多介质界面运动的动网格 方法[J]. 计算力学学报, 2010, 27( 2) : 362-368.

Memo

Memo:
-
Last Update: 2012-10-25