|Table of Contents|

Sparseness of Least Squares Support Vector Machines Based on Active Learning

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2012年01期
Page:
12-17
Research Field:
Publishing date:

Info

Title:
Sparseness of Least Squares Support Vector Machines Based on Active Learning
Author(s):
YU Zheng-tao12ZOU Jun-jie12ZHAO Xing12SU Lei12MAO Cun-li12
1.School of Information Engineering and Automation;2.Key Laboratory of Intelligent Information Processing, Kunming University of Science and Technology,Kunming 650051,China
Keywords:
least squares support vector machines sparseness active learning classification
PACS:
TP181
DOI:
-
Abstract:
To solve the sparseness problem of least squares support vector machine(LSSVM)learning process,this paper proposes a learning algorithm of LSSVM data sparseness based on active learning.This algorithm first selects initial samples based on a kernel clustering method and constructs a minimum classification using LSSVM,calculates the sample distribution under the action of the classifier,and labels the samples closest to hyper planes.These labeled samples are finally added into the training sets to train a new classifier,and the processes are repeated until the model accuracy meets requirements.The LSSVM sparse model of some samples are established.Experiments on the University of California Irvine(UCI)data sets show that the proposed algorithm can increase the sparseness of LSSVM by more 46 percent and reduce the cost of labeling samples

References:

[1] Dong Jiaxiong,Krzyzak A,Suen C Y. Fast SVM training algorithm with decomposition on very large data sets[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27( 4) : 603-618.
[2] Joachims T. Making large scale SVM learning practical [M]. Boston: MIT Press, 1999: 169-184.
[3] Ji Aibing,Pang Jiahong,Li Shuhuan, Sun Jianpin. Support vector machine for classification based on fuzzy training data[A]. International Conference on Machine Learning and Cybernetics[C]. Dalian,China: IEEE Press,2006: 1609-1614.
[4] 周晓剑,马义中,朱嘉钢. SMO 算法的简化及其在非正定核条件下的应用[J]. 计算机研究与发展. 2010, 47( 11) : 1962-1969.
[5] Catanzaro B C,Sundaram N,Keutzer K. Fast support vector machine training and classification on graphics processors[A]. International Conference on Machine Learning[C]. Helsinki,Finland: ACM Press,2008: 104-111.
[6] 张玉珍,何新,王建宇,等. 一种基于SVM 的高效球门检测方法[J]. 南京理工大学学报,2010,34( 1) : 13-18.
[7] Suykens J A K,Vandewalle J. Least squares support vector machine classifiers [J]. Neural Processing Letters, 1998,9 ( 3) : 293-300.
[8] Suykens J A K,De Brabanter J,Lukas L, et al. Weighted least squares support vector machines: robustness and sparse approximation[J]. Neuro Computing, 2002, 48( 1) : 85-105.
[9] Freund Y,Seung H,Shamir E, et al. Selective sampling using the query by committee algorithm[J]. Machine Learning, 1997, 28( 2) : 133-168. .[10] Kenji FukumiZu. Statistical active learning in multilayer perceptrons[J]. IEEE Transactions on Neural Networks, 2000, 11( 1) : 17-26.
[11] LindenBaum M,Markovitch S,RusaKov D. Selective sampling for nearest neighbor classifiers[J]. Machine Learning, 2004, 54( 2) : 125-152.
[12] Simon H A,Lea G. Problem solving and rule education: A unified view knowledge and organization[J]. Erbuam, 1974, 15( 2) : 63-73.
[13] Li M,Sethi I K. Confidence-based active learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28( 8) : 1251-1261.
[14] Hoegaerts L, Suykens J A K,Vandewallej, et al. A comparison of pruning algorithms for sparse least squares support vector machines[A]. Proceedings of the 11th International Conference on Neural Information Processing[C]. Calcutta, India: IOA Press, 2004, 3316: 1247-1253.
[15] 陶少辉,陈德钊,胡望明. 基于CCA 对LSSVM 分类器的稀疏化[J]. 浙江大学学报( 工学版) ,2007, 41( 7) : 1093-1096, 1118.
[16] Tong S,Chang E. Support vector machine active learning for image retrieval[A]. Proceedings of the 9th ACM International Conference on Multimedia [C]. Ottawa, Canada: ACM Press, 2001: 107-118.
[17] Michael I M,Graham E P,Daniel P E. Support vector machine active learning for music retrieval[J]. Multimedia Systems, 2006, 12( 1) : 3-13.
[18] Tong S,Koller D. Support vector machine active learning with applications to text classification[J]. Journal of Machine Learning Research, 2002. 2( 3) : 45-66.
[19] University of California Irvine. http: / /archive. ics. uci. edu /ml /index. html[EB/OL]. 2011-05-01.
[20] University of Waikato. http: / /www. cs. waikato. ac. nz / ml /weka[EB/OL]. 2011-06-30.
[21] Kris D B. http: / /www. esat. kuleuven. be/sista/lssvmlab [EB/OL]. 2011-05-15.

Memo

Memo:
-
Last Update: 2012-10-12