|Table of Contents|

Finite-time Stabilization Control for Nonholonomic Chained System Based on Switching Control Without Disturbances

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2012年01期
Page:
18-24
Research Field:
Publishing date:

Info

Title:
Finite-time Stabilization Control for Nonholonomic Chained System Based on Switching Control Without Disturbances
Author(s):
WANG Yi-qingLI ShengCHEN Qing-weiHOU Bao-lin
School of Automation,NUST,Nanjing 210094,China
Keywords:
nonlinear control finite-time control nonholonomic chained systems homogenous system methods terminal sliding mode control
PACS:
TP13
DOI:
-
Abstract:
In order to make every state converge to the equilibrium,the finite-time stabilization control for the nonholonomic chained system is studied here.Combining with non-disturbances switch control strategy,two kinds of finite-time stabilization controllers are proposed utilizing the homogenous system methods and terminal sliding mode control theory respectively.The selection conditions of the controller ’ s parameters are given.The proposed controllers can make every state of the nonholonomic chained system converge from the initial state to the equilibrium in finite time according to the change of the states and solve the disturbance problem of the nonholonomic chained system under the existing switch controller.The simulation results show that the proposed finite-time stabilization controllers can make every state of a 3-dimentional nonholonomic chained system converge to the equilibrium in finite time,and the control input changes continually in the whole process.

References:

[1] 李世华,丁世宏,田玉平. 一类二阶非线性系统的有限时间状态反馈镇定方法[J]. 自动化学报,2007, 33( 1) : 101-103.
[2] Bhat S P,Bernstein D S. Geometric homogeneity with applications to finite-time stability[J]. Mathematics of Control,Signals, and Systems, 2005, 17( 2) : 101-127.
[3] Bhat S P,Bernstein D S. Finite-time stability of contin-uous autonomous systems[J]. SIAM Journal of Control and Optimization, 2000, 38( 3) : 751-766.[4] Bhat S P,Bernstein D S. Lyapunov analysis of finitetime differential equations [A]. Proceedings of American Control Conference[C]. Washington DC, USA: IEEE, 1995: 1831-1832.
[5] Hong Yiguang. Finite-time stabilization and stabilizability of a class of controllable systems[J]. Systems and Control Letters, 2002, 46( 2) : 231-236.
[6] Hong Yiguang,Yang Guowu,Cheng Daizhan,et al. Finite time convergent control using terminal sliding mode[J]. Journal of Control Theory and Applications, 2004,2 ( 1) : 69-74.
[7] Hong Yiguang,Yang Guowu,Cheng Daizhan,et al. A new approach to terminal sliding mode control design [J]. Asian Journal of Control, 2005,7 ( 2) : 177-181.
[8] Feng Yong,Yu Xinghuo,Man Zhihong. Nonsingular terminal sliding mode control of rigid manipulators [J]. Automatica, 2002, 38: 2159-2167.
[9] Nersesov S G ,Haddad W M. Finite-time stabilization of nonlinear dynamical systems via control vector Lyapunov functions [J]. Journal of Franklin Institute, 2008, 345: 819-837.
[10] Hong Yiguang,Xu Yangsheng,Huang Jie. Finite-time control for robot manipulators[J]. Systems and Control Letters, 2002, 46: 243-253.
[11] 祝晓才,董国华,胡德文. 轮式移动机器人有限时间镇定控制器设计[J]. 国防科技大学学报,2006, 28( 4) : 121-127.
[12] Jammazi C. Finite-time partial stabilizability of chained systems[J]. Comptes Rendus Mathematique,2008, 346( 17 /18) : 975-980.
[13] Brockett R W. Differential geometric control theory[M]. Boston,USA: Burkhauser, 1983: 181-191.
[14] Astolfi A. On the stabilization of nonholonomic systems [A]. Proceedings of the 33rd IEEE Conference on Decision and Control[C]. Florida,USA: IEEE,1994: 3481-3486.
[15] Tayebi A,Tadjine M,Rachid A. Invariant manifold approach for the stabilization of nonholonomic systems in chained form: Application to a car-like mobile robot [A]. Proceedings of the 36th IEEE Conference on Decision and Control[C]. California,USA: IEEE,1997: 4038-4043.
[16] 李胜,陈庆伟,胡维礼. 不变流形在非完整链式系统镇定中的应用[J]. 南京理工大学学报, 2005, 29( 5) : 505-509.
[17] 马保离,霍伟. 非完整链式系统的时变光滑指数镇定[J]. 自动化学报, 2003, 29( 2) : 301-305.
[18] Matsune I,Zhai G S,Tomoaki K, et al. A study on hybrid control of nonholonomic systems[A]. International Conference on Instrumentation,Control and Information Technology [C]. Okayama,Japan: The Society of Instrument and Control Engineers, 2005: 211-214.

Memo

Memo:
-
Last Update: 2012-10-12