|Table of Contents|

New Anti-worm Model in Vehicular Internet of Things Based on Divide-and-conquer with Velocity


Research Field:
Publishing date:


New Anti-worm Model in Vehicular Internet of Things Based on Divide-and-conquer with Velocity
WANG Zheng1QIAN Huan-yan1WANG Jing-ya23GAO Song4GAO De-min15
1.School of Computer Science and Technology,NUST,Nanjing 210094,China;2.School of Information Technology,Nanjing University of Chinese Medicine,Nanjing 210046,China;3.Faculty of Information and Communication Technologies,Swinburne University of Technology
Internet of things vehicular networks network security anti-worm urban roads
To prevent and cure vehicular Internet of things(IOT)worm,according to the property of resisting potential worm attack in vehicular IOT different from traditional networks,a new anti-worm model in vehicular IOT is constructed based on divide-and-conquer with velocity.The paper treats the drive velocity of vehicle node as the conversion condition between active and passive anti-worms in hybrid anti-worms,constructs a new model combining with the environment of vehicular IOT in urban road,and implements the simulation of vehicular IOT anti-worm.The model can not only better contain the vehicular IOT worm propagation,but also better hold down the network resource spending in anti-worm.


[1] International telecommunications union. The Internet of things[R]. Geneva,Swiss: International Telecommunications Union Internet Reports, 2005.
[2] 吴功宜. 智慧的物联网———感知中国和世界的技术[M]. 北京: 机械工业出版社, 2010: 15-16.
[3] Commission of the European Communities. Internet of things—An action plan for Europe[R]. Brussels,Belgium: COM( 2009) 278, 2009: 1-12.
[4] Kranenburg R V. The Internet of things: A critique of ambient technology and the all-seeing network of RFID [A]. Network Notebooks 02[C]. Amsterdam: Institute of Network Cultures Press, 2007: 10-28.
[5] Roy W. Enabling ubiquitous sensing with RFID[J]. Computer, 2004, 37( 4) : 84-86.
[6] IBM 商业价值研究院. 智慧地球赢在中国[EB/ OL]. http: / /www. ibm. com/smarterplanet /global / files /cn _ _ zh _ cn _ _ overview _ _ decadeofsmart _ wininchina. pdf, 2009-04-28.
[7] Frank C,Emre C S,Xu Jun. Worm vs. worm: Preliminary study of an active counter-attack mechanism[A]. Proceedings of the 2004 ACM Workshop on Rapid Malcode [C]. Washington DC,USA: Association for Computing Machinery, 2004: 83-93.
[8] 文伟平,卿斯汉,蒋建春,等. 网络蠕虫研究与进展[J]. 软件学报, 2004, 15( 8) : 1208-1219.
[9] 杨峰,段海新,李星. 网络蠕虫扩散中蠕虫和良性蠕虫交互过程建模与分析[J]. 中国科学E 辑, 2004, 34( 8) : 841-856.
[10] 王佰玲,方滨兴,云晓春,等. 基于平衡树的良性蠕虫扩散策略[J]. 计算机研究与发展,2006,43( 9) : 1593-1602.
[11] 周翰逊,赵宏. 主动良性蠕虫和混合良性蠕虫的建模与分析[J]. 计算机研究与发展, 2007, 44( 6) : 958-964.
[12] 汪峥,钱焕延,汪婧雅,等. 车载物联网中蠕虫传播模型的构建与仿真[J]. 计算机科学, 2012, 39( 3) : 28-32.
[13] Zou Changchun,Gao Lixin,Gong Weibo, et al. Monitoring and early warning for Internet worms[A]. Proceedings of the 2003 ACM Workshop on Rapid Malcode[C]. Washington DC,USA: Association for Computing Machinery, 2003: 190-199.
[14] Beretta E,Takeuchi Y. Convergence results in SIR epidemic models with varying population sizes[J]. Nonlinear Analysis, 1997, 28: 1909-1921.
[15] Rhodes D C J,Anderson R M. Contact rate calculation for a basic epidemic model[J]. Mathematical Biosciences, 2008, 216( 1) : 56-62.
[16] Helbing D. Traffic and related self-driven many-particle systems[J]. Rev Mod Phys, 2001, 73: 1067-1141.
[17] Sim M L,Nekovee M,Ko Y F. Throughput analysis of WiFi based broadband access for mobile users on highways [A]. Proceedings of IEEE MICC/ICON 2005 [C]. Kuala Lampur,Malaysia: IEEE Computer Society Press, 2005: 21-26.
[18] Wang Ping,Li Yingzhe,Chang R,et al. Path loss modelling and comparison based on the radio propagation measurement at 3. 5GHz[J]. High Technology Letters, 2009, 15: 272-276.
[19] Bailey M,Cooke E, Jahanian F, et al. The Internet motion sensor: A distributed blackhole monitoring system[A]. Proceedings of the 12th ISOC Symposium on Network and Distributed Systems Security[C]. San Diego,USA: IEEE Computer Society Press, 2005: 167-179.


Last Update: 2012-10-12