|Table of Contents|

Simulation for Deployment Process and Concentrating Performance of Inflatable Concentrator


Research Field:
Publishing date:


Simulation for Deployment Process and Concentrating Performance of Inflatable Concentrator
WANG Lei-leiHUANG Hu-lin
Academy of Frontier Science,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
inflatable concentrators deployment Monte Carlo ray tracing method wrinkling numerical simulation
To study the deployment process and deployed characteristics of the inflatable concentrator,a paraboloidal dish concentrator,whose aperture and focal length are 20 m2 and 8 m respectively,is built and taken as an example.The deployment of the one-fold and three-fold inflatable support truss and reflecting part is simulated with the control volume method.Based on the geometrical model of a deployed reflecting surface,the concentrating characteristics on the receiving plane are performed with the Monte Carlo ray tracing method.The results show that the concentrating efficiency of the deployed structure is 57% of the designed one,and the low concentrating efficiency is mainly caused by the wrinkling of the reflecting surface.Analysis of unfolded structure ’ s concentrating efficiency can be as a new method to evaluate the deployment performance of deployable structure.


[1] 刘明治,高桂芳. 空间可展开结构研究进展[J]. 宇航学报, 2003, 24( 1) : 82-87.
[2] Salama M,Kuo C P,Lou M. Simulation of deployment dynamics of inflatable structures[J]. AIAA Journal, 2000, 38( 12) : 2277-2283.
[3] Freeland R E,Billyeu G D. In-step inflatable antenna experiment[A]. IAF Proceedings of the 43rd Congress of the International Astronautical Federation [C]. Washington D C: IAF, 1992: 1-12.
[4] Pappa R S,Giersch L R,Quagliaroli J M. Photogrammetry of a 5m inflatable space antenna with consumer digital cameras[R]. Technical Memorandum/TM-2000-210627. Washington: NASA, 2000: 1-11.
[5] Naboulsi S. Investigation of geometric imperfection in inflatable aerospace structures[J]. Journal of Aerospace Engineering, 2004, 17( 3) : 98-105.
[6] Tang T N. Edge effects in pressurized membranes[J]. Journal of Engineering Mechanics,2002,128 ( 10 ) : 1100-1104.
[7] Richard C,Eric S. Design and flight qualification of the rigidizable inflatable get-away-special experiment[J]. Journal of Spacecraft and Rockets,2010,47 ( 4 ) : 659-669.
[8] Raymond L,David T. Computational investigation of flow over inflatable airfoils at multiple reynolds numbers[A]. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition [C]. Orlando,Florida: AIAA, 2011: 4-7.
[9] 徐彦,关富玲,管瑜. 充气可展开结构精度分析和形面调整[J]. 空间科学学报, 2006, 26( 4) : 292-297.
[10] 徐彦,关富玲,马燕红. 充气可展开结构的反射面设计及精度测量[J]. 浙江大学学报( 工学版) ,2007, 41( 11) : 1911-1916.
[11] Wang C G,Du X W. Numerical simulation of wrinkles in space inflatable membrane structures[J]. Journal of Spacecraft and Rockets, 2006, 43( 5) : 1147-1149.
[12] 王长国,杜星文,郝晓东. 空间充气薄膜结构的褶皱分析[J]. 力学学报, 2008, 40( 3) : 331-338.
[13] 沈世钊. 膜结构-发展迅速的新型空间结构[J]. 哈尔滨建筑大学学报, 1999, 32: 11-15.
[14] Christiansen E L,Kerr J H,De la Fuente H M,et al. Flexible and deployable meteoroid /debris shielding for spacecraft[J]. International Journal of Impact Engineering, 1999, 23( 1) : 125-136.
[15] Schuler P,Haghighat R. Space durable polymeric films: Advanced materials for inflatable structures and thermal control applications [J]. SAMPE Journal, 1999, 35( 5) : 37-44.
[16] 李苇. 充气结构在大型星载结构中的应用[D]. 西安: 西安电子科技大学机电工程学院, 2007.
[17] Song H P,Smith S W,Main J A. Dynamic testing of an inflatable, self-supporting,unpressurized thin-film torus [J]. Journal of Guidance,Control,and Dynamics, 2006, 29( 4) : 839-845.
[18] Smalley K B,Tinker M L,Taylor W S. Structural modeling of a five-meter thin-film inflatable antenna /concentrator [J]. Journal of Spacecraft and Rockets, 2002, 40( 1) : 27-29. 78


Last Update: 2012-10-12