|Table of Contents|

Simulation for Deployment Process and Concentrating Performance of Inflatable Concentrator

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2012年01期
Page:
73-78
Research Field:
Publishing date:

Info

Title:
Simulation for Deployment Process and Concentrating Performance of Inflatable Concentrator
Author(s):
WANG Lei-leiHUANG Hu-lin
Academy of Frontier Science,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
Keywords:
inflatable concentrators deployment Monte Carlo ray tracing method wrinkling numerical simulation
PACS:
V414.1
DOI:
-
Abstract:
To study the deployment process and deployed characteristics of the inflatable concentrator,a paraboloidal dish concentrator,whose aperture and focal length are 20 m2 and 8 m respectively,is built and taken as an example.The deployment of the one-fold and three-fold inflatable support truss and reflecting part is simulated with the control volume method.Based on the geometrical model of a deployed reflecting surface,the concentrating characteristics on the receiving plane are performed with the Monte Carlo ray tracing method.The results show that the concentrating efficiency of the deployed structure is 57% of the designed one,and the low concentrating efficiency is mainly caused by the wrinkling of the reflecting surface.Analysis of unfolded structure ’ s concentrating efficiency can be as a new method to evaluate the deployment performance of deployable structure.

References:

[1] 刘明治,高桂芳. 空间可展开结构研究进展[J]. 宇航学报, 2003, 24( 1) : 82-87.
[2] Salama M,Kuo C P,Lou M. Simulation of deployment dynamics of inflatable structures[J]. AIAA Journal, 2000, 38( 12) : 2277-2283.
[3] Freeland R E,Billyeu G D. In-step inflatable antenna experiment[A]. IAF Proceedings of the 43rd Congress of the International Astronautical Federation [C]. Washington D C: IAF, 1992: 1-12.
[4] Pappa R S,Giersch L R,Quagliaroli J M. Photogrammetry of a 5m inflatable space antenna with consumer digital cameras[R]. Technical Memorandum/TM-2000-210627. Washington: NASA, 2000: 1-11.
[5] Naboulsi S. Investigation of geometric imperfection in inflatable aerospace structures[J]. Journal of Aerospace Engineering, 2004, 17( 3) : 98-105.
[6] Tang T N. Edge effects in pressurized membranes[J]. Journal of Engineering Mechanics,2002,128 ( 10 ) : 1100-1104.
[7] Richard C,Eric S. Design and flight qualification of the rigidizable inflatable get-away-special experiment[J]. Journal of Spacecraft and Rockets,2010,47 ( 4 ) : 659-669.
[8] Raymond L,David T. Computational investigation of flow over inflatable airfoils at multiple reynolds numbers[A]. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition [C]. Orlando,Florida: AIAA, 2011: 4-7.
[9] 徐彦,关富玲,管瑜. 充气可展开结构精度分析和形面调整[J]. 空间科学学报, 2006, 26( 4) : 292-297.
[10] 徐彦,关富玲,马燕红. 充气可展开结构的反射面设计及精度测量[J]. 浙江大学学报( 工学版) ,2007, 41( 11) : 1911-1916.
[11] Wang C G,Du X W. Numerical simulation of wrinkles in space inflatable membrane structures[J]. Journal of Spacecraft and Rockets, 2006, 43( 5) : 1147-1149.
[12] 王长国,杜星文,郝晓东. 空间充气薄膜结构的褶皱分析[J]. 力学学报, 2008, 40( 3) : 331-338.
[13] 沈世钊. 膜结构-发展迅速的新型空间结构[J]. 哈尔滨建筑大学学报, 1999, 32: 11-15.
[14] Christiansen E L,Kerr J H,De la Fuente H M,et al. Flexible and deployable meteoroid /debris shielding for spacecraft[J]. International Journal of Impact Engineering, 1999, 23( 1) : 125-136.
[15] Schuler P,Haghighat R. Space durable polymeric films: Advanced materials for inflatable structures and thermal control applications [J]. SAMPE Journal, 1999, 35( 5) : 37-44.
[16] 李苇. 充气结构在大型星载结构中的应用[D]. 西安: 西安电子科技大学机电工程学院, 2007.
[17] Song H P,Smith S W,Main J A. Dynamic testing of an inflatable, self-supporting,unpressurized thin-film torus [J]. Journal of Guidance,Control,and Dynamics, 2006, 29( 4) : 839-845.
[18] Smalley K B,Tinker M L,Taylor W S. Structural modeling of a five-meter thin-film inflatable antenna /concentrator [J]. Journal of Spacecraft and Rockets, 2002, 40( 1) : 27-29. 78

Memo

Memo:
-
Last Update: 2012-10-12