|Table of Contents|

Dynamic Substructure Technique for Elastic-plastic Impact Responses of Simply Supported Beam


Research Field:
Publishing date:


Dynamic Substructure Technique for Elastic-plastic Impact Responses of Simply Supported Beam
QIAN Peng-boYIN Xiao-chunSHEN Yu-nianYANG JunKONG De-ping
School of Sciences,NUST,Nanjing 210094,China
dynamic substructures beams impacts elastic-plastic dynamics
For the elastic-plastic impact response of a simply supported beam,an impact substructure model is built and its governing equations in modal coordinates are derived from the finite element theory and modal synthesis method.A dynamic substructure technique is presented and applied to solve the elastic-plastic impact response.By considering the local elastic-plastic contact deformation,some dynamical variables,such as the complicated history of contact force,the elastic-plastic stress distribution,the displacement field,the angular displacement field and the transverse velocity field of the beam are calculated.The transient dynamics phenomena are also displayed,including the propagations of elastic-plastic waves and the formations of plastic hinges.The comparison with those of the finite element method and the plastic hinges theory shows that the dynamic substructure technique here is effective and valid for elastic-plastic impact responses of flexible beams.


[1] Chang Chialung,Yang Shaohuei. Simulation of wheel impact test using finite element method [J ]. Engineering Failure Analysis, 2009, 16: 1711-1719.[2] Kaiming B,Hong H,Nawawi C. Required separation distance between decks and at abutments of a bridge crossing a canyon site to avoid seismic pounding[J]. Earthquake Engineering and Structural Dynamics, 2010, 39: 303-323.
[3] 徐然,尹晓春. 桥梁多次重撞击动力学响应的瞬态波效应法[J]. 南京理工大学学报, 2010, 34( 3) : 309 -313.
[4] Kishi N,Bhatti A Q. An equivalent fracture energy concept for nonlinear dynamic response analysis of prototype RC girders subjected to falling-weight impact loading [ J ]. International Journal of Impact Engineering, 2010, 37: 103-113.
[5] Li Yuwen,Xi Fengfeng,Behdinan K. Dynamic modeling and simulation of percussive impact riveting for robotic automation[J]. Journal of Computational and Nonlinear Dynamics, 2010,5 ( 2) : 021011-10.
[6] Yu Tongxi,Yang Jialing,Reid S R. Dynamic behaviour of elastic-plastic free-free beams subjected to impulsive loading[J]. International Journal of Solids and Structures, 1996, 33( 18) : 2659-2680.
[7] 刘中华,尹晓春,唐亮. 局部接触变形模型对简支梁多次弹塑性撞击模拟结果的比较[J]. 南京理工大学学报, 2009, 33( 6) : 739-744.
[8] Hurty W C. Dynamic analysis of structural systems using component modes [J]. AIAA Journal,1965, 3( 4) : 678-685.
[9] 向树红,邱吉宝,王大钧. 模态分析与动态子结构方法新进展[J]. 力学进展, 2004, 34( 3) : 289-303.
[10] Wu S C,Haug E J. A substructure technique for dynamics of flexible mechanical systems with contact-impact [J]. Journal of Mechanical Design, 1990, 112( 3) : 390-398.
[11] Guo Anping,Hong Jiazhen,Yang Hui. A dynamic model with substructures for contact-impact analysis of flexible multibody systems [J]. Science in China ( Series E) , 2003, 46( 1) : 33-40.
[12] Guo Anping,Batzer S. Substructure analysis of a flexible system contact-impact event[J]. Journal of Vibration and Acoustics, 2004, 26( 1) : 126-131.[13] 刘锦阳. 研究柔性体碰撞问题的子结构离散方法[J]. 计算力学学报, 2001, 18( 1) : 28-32.
[14] 沈煜年,尹晓春. 非均质柔性杆碰撞瞬态动力学动态子结构法[J]. 工程力学, 2008, 25( 11) : 42-47.
[15] Shen Yunian,Yin Xiaochun. Dynamic substructure model for multiple impact responses of micro /nano piezoelectric precision drive system[J]. Science in China ( Series E) , 2009, 52( 3) : 622-633.
[16] 王文亮. Hurty-Craig 约束模态综合法的动力原理和它的一种变体[J]. 复旦大学学报( 自然科学版) , 1982, 21( 2) : 121-130.


Last Update: 2012-10-12