|Table of Contents|

Dynamics Model Analysis of Vector-host Epidemic Disease Transmission

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2012年02期
Page:
304-308
Research Field:
Publishing date:

Info

Title:
Dynamics Model Analysis of Vector-host Epidemic Disease Transmission
Author(s):
KONG Qing-kai1QIU Zhi-peng2ZOU Yun1
1.School of Automation,2.School of Sciences,NUST,Nanjing 210094,China
Keywords:
epidemic diseases migrations vector-host stability travelers
PACS:
R312
DOI:
-
Abstract:
To study the effect of the host migration between two patches as travelers on the vector-host epidemic disease transmission,a two-patch vector-host epidemic disease transmission model is proposed here.The expression of the basic reproduction number is derived by analyzing the stability of the disease free equilibrium.Using the ordinary differential equations and the uniform persistence theory for the dynamical system,it is proved that,when the basic reproduction number is smaller than 1,the disease free equilibrium is locally stable,otherwise the equilibrium is unstable and the system is uniformly persistent.The numerical results show that the vector-host epidemic disease transmission can be controlled by restricting properly the hosts traveling between patches.

References:

[1] Qiu Z P. Dynamical behavior of a vector-host epidemic model with demographic structure[J]. Comput Math Appl, 2008, 56: 3118-3129.
[2] Feng Z L,Velasco-Hernndez J X. Competitive exclusion in a vector-host model for the dengue fever[J]. J Math Biol, 1997, 35: 523-544.
[3] Cruz-Pachecoa G,Estevab L,Montano-Hirosec J A,et al. Modelling the dynamics of West Nile virus[J]. Bull Math Biol, 2005, 67: 1157-1172.
[4] 党艳霞,王娟,李学志. 一类两菌株传染病模型的稳定性分析[J]. 数学的实践与认识, 2010, 40( 14) : 92-96.
[5] 宋伊琳,崔景安. 具有年龄结构的SIS 模型的研究[J].南京师大学报( 自然科学版), 2006, 29( 2) : 21-25.
[6] 晏谢飞,邹云. 最优阻隔控制在一类SIRS 多组群传染病中的应用[J]. 南京理工大学学报,2007,31 ( 4) : 426-429.
[7] 苟清明,王稳地. 一类有迁移的SIS 流行病模型[J]. 系统科学与数学, 2007, 27( 4) : 587-596.
[8] Wonham M J,de-Camino-Beck T,Lewis M. An epidemiological model for West Nile virus: invasion analysis and control applications[J]. Proceedings of the Royal Society of London ( Series B) ,Biological Sciences, 2004, 1538: 501-507.
[9] Auger P,Kouokam E, Sallet G, et al. The Ross-Macdonald model in a patchy environment[J]. Math Biosci,2008, 216: 123-131.
[10] van den Driessche P,Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Math Biosci,2002, 180: 29-48.
[11] Smith H L. Cooperative systems of differential equations with concave non-linearities[J]. Nonlinear Analysis Theory, Methods and Applications, 1986, 10: 1037-1052.
[12] Castillo-Chavez C, Thieme H R. Asymptotically autonomous epidemic models [A]. Mathematical Population Dynamics: Analysis of Heterogeneity,I. Theory of Epidemics[C]. Winnipeq,Canada: World Scientific Publishing Co, 1995: 33-50.

Memo

Memo:
-
Last Update: 2012-10-12