|Table of Contents|

Ant Colony Optimization Algorithm Based on Limited Bandwidths Fuzzy Weight Value and Its Application

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2012年02期
Page:
320-327
Research Field:
Publishing date:

Info

Title:
Ant Colony Optimization Algorithm Based on Limited Bandwidths Fuzzy Weight Value and Its Application
Author(s):
JIN Jin12HONG Yi1ZHAO Fu-qing1YU Dong-mei1
1.College of Electrical and Informantion Engineering,Lanzhou University of Technology,Lanzhou 730030,China; 2.School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China
Keywords:
path weight value traffic distribution dynamical routing bandwidth constraint
PACS:
TP18;TP393.06
DOI:
-
Abstract:
In view of the problem that the traffic-controlled optimal path calculation has no optimal path but complex calculation,a fuzzy ant colony optimization routing algorithm is used to solve the dynamical traffic distribution when the bandwidth is constrained in the random network topology.The path weight value distributed by the fuzzy control of the network traffic is combined with the pheromone.The optimal routings is dynamically selected among the multiple path according to the globl ant colony searching and the pheromone control.The simulation results show that the given algorithm is effective and can improve the exploring convergence speed of the traditional routing algorithm in the network traffic.

References:

[1] Schoonderwoerd R,Holland O,Bruten J, et al. Ant-based load balancing in telecommunications networks[J]. Adaptive Behavior, 1997,5 ( 2) : 169-207.[2] 林国辉,马正新,王勇前,等. 基于蚂蚁算法的拥塞规避路由算法[J]. 清华大学学报, 2003, 43( 1) : 1-4.
[3] 罗万明,林闯,阎保平. 一种支持多媒体通信QoS 拥塞控制机制[J]. 电子学报, 2000, 28( 11) : 48-52.
[4] Gelenbe E,Ghanwani A,Srinivason V. Improved neural heuristics for ulticast routing[J]. IEEE Journal on Selected Areas in Communications, 1997, 15 ( 2) : 147-155.
[5] White T,Pagurek B,Oppacher F. ASGA: Improving the ant system by integration with genetic algorithms[A]. Proceedings of the 3rd Conference on Genertic Programming( GP /SGA’98) [C]. Wisconsin,USA: University of Wisconsin Madision, 1998: 610-617.
[6] Colorni A,Dorigo M,Maniezzo V. Distributed optimization by ant colonies[A]. Proc of the ECAL 91-European Conf on Artificial Life[C]. Paris: Elsevier, 1991: 134-142.
[7] Dortgo M,Maniezzo V,Colorni A. Ant system: Optimization by a colony cooperating agents[J]. IEEE Transactions on Systems,Man,and Cybernetics-Part B: Cybernetics, 1996, 26( 1) : 29-41.
[8] Dortgo M,Gianni D C. Ant algorithms for discrete optimization [J]. Artificial Life, 1999,5 ( 3) : 137-172.
[9] Thomas S,Holger H H. MAX-MIN ant system[J]. Future Generation Computer System,2000,16 ( 8 ) : 889 -914.
[10] Riedl A. Hybrid genetic algorithm for routing optimization in IP networks utilizing bandwidth and delay metrics [A]. IP Operations and Management ( IPOM’02) [C]. Dallas,USA: IEEE Workshop on IP Operations and Management, 2002: 166-170.
[11] 孙力娟,王汝传. 基于蚁群算法和遗传算法融合的 QoS 组播路由问题求解[J]. 电子学报,2006,34 ( 8) : 1391-1395.
[12] Kwangmong S,Wenghong S. Ant colony optimization for routing and load-balancing: Survey and new directions [J]. IEEE Transactions on Systems,Man and Cybernetics- Part A: Systems and Humans, 2003, 33( 5) : 560-572.
[13] Callon R W. Use of OSI IS-IS for routing in TCP /IP and dual environments[S]. IETF RFC 1195, 1990.
[14] Moy J. OSPF Version 2[S]. IETF RFC 2328, 1998.
[15] Awduche D,Berger L,Gan D, et a1. RSVP-TE: Extensions to RSVP for LSP Tunnels[S]. IETF RFC 3209, 2001.
[16] Ashwood S P,Berger L. GMPLS signaling constraint based routed label distribution protocol( CR-LDP) extensions [S]. IETF RFC 3472, 2003.
[17] Waxman B M. Routing of multipoint connections[J]. IEEE Journal on Selected Area in Communications, 1988,6 ( 9) : 1617-1622.

Memo

Memo:
-
Last Update: 2012-10-12