|Table of Contents|

Particle Swarm Optimization Based on Boltzmann Learning Strategy

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2012年03期
Page:
402-407
Research Field:
Publishing date:

Info

Title:
Particle Swarm Optimization Based on Boltzmann Learning Strategy
Author(s):
AI Jie-qing12GAO Ji3
1.Information Center;2.Software Testing Lab,Guangdong Power Grid Corporation,Guangzhou 510000,China; 3.Institute of Artificial Intelligence,Zhejiang University,Hangzhou 310000,China
Keywords:
partial swarm optimization Boltzmann learning strategy simulated annealing global optimization multimodal problems
PACS:
TP301.6
DOI:
-
Abstract:
An improved particle swarm optimization(PSO)based on Boltzmann learning strategy(BLSPSO)is proposed to overcome the problem of premature convergence and easily getting into local extremum of the the standard PSO.Using the idea of the simulated annealing algorithm for reference,the Boltzmann learning strategy is introduced into the standard PSO.In the prophase of BLSPSO,the particles can study different extreme points.The diversities of the particles are preserved to improve the BLSPSO’s global optimization ability.In the anaphase of BLSPSO,the particle tends to study the global best information.The convergence velocity is improved,and the stability of the algorithm is ensured.The simulation results show that the BLSPSO has powerful optimizing ability,higher search veracity.It can avoid premature convergence effectively and have good performance in solving multimodal problems compared with other PSO algorithms.

References:

[1] Kennedy J,Eberthart R. Particle swarm optimization[A]. Proc of Int’1 Conf on Neural Networks[C]. Piscataway, NJ,USA: IEEE Service Center, 1995: 192-198.
[2] 窦全胜,周春光. 动态优化环境下的群核进化粒子群优化方法[J]. 计算机研究与发展,2007,43( 1) : 89-95.
Dou Quansheng,Zhou Chunguang. Swarm-core evolutionary particle swarm optimization in dynamic optimization environments[J]. Journal of Computer Research and Development, 2007, 43( 1) : 89-95.
[3] Kennedy J. Small worlds and mega-minds: Effects of neighborhood topology on particle swarm performance [A]. Proc Congr Evol Comput[C]. New York,USA: IEEE Service Center, 1999: 1931-1938.
[4] Kennedy J,Mendes R. Population structure and particle swarm performance[A]. Proc IEEE Congr Evol Comput [C]. Honolulu,Hawaii,USA: IEEE Service Center, 2002: 1671-1676.
[5] 刘衍民,赵庆祯. 一种基于动态邻居和变异因子的粒子群算法[J]. 控制与决策, 2010, 25( 7) : 354-361.
Liu Yanmin,Zhao Qingzhen. Particle swarm optimizer based on dynamic neighborhood topology and mutation operator[J]. Control and Decision,2010,25 ( 7) : 354 -361.
[6] 倪庆剑,张志政. 一种基于可变多簇结构的动态概率粒子群优化算法[J]. 软件学报, 2009, 20( 8) : 339-349.
Ni Qingjian,Zhang Zhizheng. Dynamic probabilistic particle swarm optimization based on varying multicluster structure[J]. Journal of Software,2009,20 ( 8) : 339-349.
[7] 贾东立,张家树. 基于混沌变异的小生境粒子群算法[J]. 控制与决策, 2007, 22( 1) : 185-191.
Jia Dongli,Zhang Jiashu. Niche particle swarm optimization combined with chaotic mutation[J]. Control and Decision, 2007, 22( 1) : 185-191.
[8] Angeline P J. Using selection to improve particle swarm optimization[A]. Proc IEEE Congr Evol Comput[C]. Anchorage,AK,USA: IEEE Service Center, 1998: 84-89.
[9] Lovbjerg M,Krink T. Hybrid particle swarm optimizer with breeding and sub populations[A]. Proc Genetic Evol Comput Conf[C]. London,UK: IEEE Service Center, 2001: 469-476.
[10] Miranda V,Fonseca N. New evolutionary particle swarmal- gorithm( EPSO) applied to voltage /VAR control [A]. Proc 14th Power Syst Comput Conf[C]. Spain: IEEE Service Center, 2002: 1865-1873.
[11] Liang J J,Qin A K. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Trans Evol Comput, 2006, 12( 8) : 1324-1341.
[12] Schutteand J,Groenwold A. Sizing design of truss structures using particle swarms[J]. Struct Multidisc Optim, 2003: 25( 4) : 261-269.
[13] Coello C,Lechuga M. Handling multiple object-tives with particle swarm optimization [J]. IEEE Trans Evol Comput, 2004: 8( 3) : 256-279.
[14] Messerschmidt L,Engelbrecht A. Learning to play games using a PSO-based competitive learning approach[J]. IEEE Trans Evol Comput, 2004: 8( 1) : 280-288.
[15] Shi Y,Eberhart R C. A modified particle swarm optimizer [J]. IEEE Trans Evol Comput, 1998: 8( 3) : 69-73.
[16] Shi Y,Eberhart R C. Particle swarm optimization with fuzzy adaptive inertia weight[A]. Proc Workshop Particle Swarm Optimization[C]. Indianapolis, IN,USA: IEEE Service Center, 2001: 101-106.
[17] 胡旺,李志蜀. 一种更简化而高效的粒子群优化算法[J]. 软件学报, 2007, 18( 4) : 861-868.
Hu Wang,Li Zhishu. A simpler and more effective particle swarm optimization algorithm[J]. Journal of Software, 2007, 18( 4) : 861-868.

Memo

Memo:
-
Last Update: 2012-10-12