|Table of Contents|

Application of Wigner Higher-order Spectra in Analysis of Projectile Motion in Bore

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2012年03期
Page:
442-447
Research Field:
Publishing date:

Info

Title:
Application of Wigner Higher-order Spectra in Analysis of Projectile Motion in Bore
Author(s):
CHEN XiXU Jian-zhong
School of Electronic Engineering and Optoelectronic Technology,NUST,Nanjing 210094,China
Keywords:
higher-order spectra projectiles motion in bore time-frequency analysis echo signals higher-order polynomial frequency modulation signals
PACS:
TN911.7
DOI:
-
Abstract:
In view of the problems of the time-frequency distribution map of traditional time-frequency distribution analysis that has poor convergence of energy,serious cross-term interference and noise sensitivity,a method for the signal processing of the echo of projectile motion in bore is proposed based on Wigner higher-order spectrum.The advantages of Wigner higher-order spectrum on the instantaneous frequency estimation of higher-order polynomial frequency modulation signals are verified through the comparative study of energy concentration,cross-term suppression and anti-noise.The time-frequency distribution map is obtained by the Wigner trispectrum slice spectrum algorithm designed on MATLAB for the measured data of a certain type of projectile.An instantaneous frequency curve is obtained through the ridge extraction of time-frequency distribution map.The velocity and acceleration curves of in-bore projectiles are inversed according to the Doppler effect formula.Compared with the experimental results,the relative errors of the muzzle velocity,the range of projectile motion and the real length of the barrel are 1.34%,0.52% and 0.52%.It is indicated that the Wigner higher-order spectrum is a more accurate and effective method on the echo signal processing of projectile motion in bore under strong noise environment.

References:

[1] 杨正龙,方大纲. 基于时频分析的带腔体雷达目标弱信号检测[J]. 南京理工大学学报,2002,26( 3) : 330-333.
Yang Zhenglong,Fang Dagang. Weak signal detection of cavity embedded radar target based on timefrequency analysis[J]. Journal of Nanjing University of Science and Technology, 2002, 26( 3) : 330-333.
[2] 吴军基,刘皓明,武频. 弹丸速度测量数据处理的一种方法[J]. 南京理工大学学报, 2001, 25( 3) : 328-331.
Wu Junji,Liu Haoming,Wu Pin. The data processing of projectile velocity measurement [J]. Journal of Nanjing University of Science and Technology,2001, 25( 3) : 328-331.
[3] Boudreaux-Bartels G F. Time-frequency signal processing algorithms: Analysis and synthesis using Wigner distributions [D]. Houston,USA: Rice University,1984: 7 -11.
[4] Cohen L. Time-frequency distributions—A review[J]. Proceedings of the IEEE, 1989, 77( 7) : 941-981.
[5] Boashash B,O’shea P. Polynomial Wigner-Ville distributions and their relationship to time-varying higher order spectra [J ]. IEEE Transactions on Signal Processing, 1994, 42( 1) : 216-220.
[6] Fonollosa J R,Nikias C L. Wigner higher order moment spectra: definition, properties, computation and application to transient signal analysis[J]. IEEE Transactions on Signal Processing, 1993, 41( 1) : 245-266.
[7] 孙骏,陈淑珍,邹炼. Wigner 高阶矩谱在分析相控阵探地雷达数据中的应用[J]. 武汉大学学报( 理学版) , 2004, 50( 5) : 637-640.
Sun Jun,Chen Shuzhen,Zou Lian. Analysis of data by Wigner higher-order moment spectra methods for phasedarray ground penetrating radar[J]. Journal of Wuhan University( Science Edition), 2004, 50( 5) : 637-640.
[8] 郭雄伟,张永寿,伍星,等. 高阶时频分布在滚动轴承故障诊断中的应用研究[J]. 科学技术与工程, 2010, 10( 2) : 523-527.
Guo Xiongwei,Zhang Yongshou,Wu Xing,et al. Rolling bearing fault diagnosis based on higher-order time-frequency distribution [J]. Science Technology and Engineering, 2010, 10( 2) : 523-527.
[9] 张贤达. 时间序列分析-高阶统计量方法[M]. 北京: 清华大学出版社, 1996: 23-28.
[10] Rodriguez F J,Nikias C L. Analysis of finite-energy signals using higher-order moments and spectra-based time-frequency distributions[J]. Signal Processing, 1994, 36( 3) : 315-328.
[11] 赵立强. 时频分析在内弹道测速雷达中应用[D].南京: 南京理工大学电子工程与光电技术学院, 2006: 12-16.
[12] 杨健. 毫米波干涉仪膛内信号处理研究[D]. 南京: 南京理工大学电子工程与光电技术学院, 2010: 23-24.

Memo

Memo:
-
Last Update: 2012-10-12