|Table of Contents|

Two-dimensional Numerical Simulation of Melt-wave Erosion in Solid Armatures

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2012年03期
Page:
487-491
Research Field:
Publishing date:

Info

Title:
Two-dimensional Numerical Simulation of Melt-wave Erosion in Solid Armatures
Author(s):
GONG FeiWENG Chun-sheng
National Key Lab of Transient Physics,NUST,Nanjing 210094,China
Keywords:
railguns solid armature melt-wave erosion finite difference method
PACS:
TM15
DOI:
-
Abstract:
In order to reflect armature erosion characteristics in railguns exactly,a computational model of melt-wave erosion in two-dimensional solid armatures is developed.The variation characteristics of melt-wave erosion are obtained adopting coupling calculations by using the Peaceman-Rachford(P-R)format of the finite difference method.The calculation results show that:the driving mechanism of erosion is the velocity skin effect,a concentration of current is at the rear edge of the rail-armature interface,and the erosion occurs due to the joule heating.The melt-wave moves from the back to the front of the armature.It is possible to cause an armature transition when the melt-wave reaches the front of the armature.

References:

[1] Young F J,Hughes W F. Rail and armature current distributions in electromagnetic launchers[J]. IEEE Transactions on Magnetics, 1982, 18( 1) : 33-41.
[2] 李昕,翁春生. 固体电枢电磁导轨炮非稳态电磁效应[J]. 南京理工大学学报, 2009, 33( 1) : 108-111.
Li Xin,Weng Chunsheng. Unsteady electromagneticeffect on solid armature railguns[J]. Journal of Nanjing University of Science and Technology,2009,33 ( 1) : 108-111.
[3] 李昕,翁春生. 块状固体电枢非稳态电磁效应的三维数值模拟[J]. 弹道学报, 2009, 21( 1) : 103-106.
Li Xin,Weng Chunsheng. Three-dimentional numerical simulation of unsteady electromagnetic effect in block solid armature[J]. Journal of Balistics,2009,21( 1) : 103-106.
[4] Parks P B. Current melt-wave model for transitioning solid armature[J]. Journal of Applied Physics,1990, 67( 7) : 3511-3516.
[5] Barber J P,Dreizin Y A. Model of contact transitioning with realistic armature-rail interface[J]. IEEE Transactions on Magnetics, 1995, 31( 1) : 96-100.
[6] Woods L C. The current melt-wave model[J]. IEEE Transactions on Magnetics, 1997, 33( 1) : 152-156.
[7] Merrill R,Stefani F. Electrodynamics of the current melt-wave erosion boundary in a conducting half-space [J]. IEEE Transactions on Magnetics,2003,39 ( 1) : 66-71.
[8] Benton T,Stefani F,Satapathy S, et al. Numerical modeling of melt-wave erosion in conductors[J]. IEEE Transactions on Magnetics, 2003, 39( 1) : 129-133.
[9] Stefani F,Merrill R,Watt T. Numerical modeling of melt-wave erosion in two-dimensional block armatures [J]. IEEE Transactions on Magnetics,2005,41 ( 1) : 437-441.
[10] Stefani F,Watt T. The effect of current and speed on perimeter erosion in recovered armatures[J]. IEEE Transactions on Magnetics, 2005, 41( 1) : 448-452.
[11] Watt T,Stefani F,Crawford M,et al. Investigation of damage to solid-armature railguns at startup[J]. IEEE Transactions on Magnetics, 2007, 43( 1) : 214-218.
[12] Watt T J,Bryant M D. Cracking and dominant stresses in the throat region of c-shaped solid armatures[J]. IEEE Transactions on Magnetics, 2007, 43( 1) : 418-421.
[13] Stefani F,Crawford M,Melton D,et al. Experiments with armature contact claddings [ J ]. IEEE Transactions on Magnetics, 2007, 43( 1) : 413-417.
[14] Reck B,Lehmann P,Spahn E,et al. A model for predicting transition in railgun fiber brush armatures[J]. IEEE Transactions on Magnetics,2009,45 ( 1 ) : 620 -625.

Memo

Memo:
-
Last Update: 2012-10-12