|Table of Contents|

Influence of Initiation Mode on Power of Deformable Directional Warhead


Research Field:
Publishing date:


Influence of Initiation Mode on Power of Deformable Directional Warhead
YANG Ya-dong1LI Xiang-dong1BO Xue-fei2
1. School of Mechanical Engineering,NUST,Nanjing 210094,China; 2. Military Research and Development Center,Yuxi Industries Group Co. Ltd. ,Nanyang 473000,China
explosion mechanics deformable directional warhead numerical simulation initiation modesenhancement
O383. 3
In order to reveal the influence of initiation modes of the main charge on the power of de- formable warhead,the deforming and projectile processes of the deformable warhead are numerically simulated by the finite element analysis software LS-DYNA3D, and change laws of the fragment velocity and densities enhancement under the different radial and axial initiation modes of the main charge are studied here. The results show that, under the radial initiation, the enhancement of fragment velocity is maximum when the distance from the initiation point to the center of the end face equals the radius of main charge and the angle between the two lines formed by the initiation point and the center of the end face is 45°. The both ends initiation mode is better than one end initiation mode and the line initiation mode under the axial initiation. Comparied with the uniform warhead,the fragment density enhancement is 78. 7% and the fragment velocity enhancement is 32. 2% in the target direction when initiated by the both ends mode of the main charge.


[1]Leland L P,Corona C. Directed Warhead[ P]. United States Patent:3714897,1973-02-06.
[2] Held M. Aimable fragment warhead[ A]. Proceedings of the 13th International Symposium on Ballistics[C]. Stockholm:Fraunhofer Publica,1992:532-548.
[3] Lee K E, Hatch R L, Mmzger M. High performance explosive containing CL-20[ P]. US Patent:6214137 B1,2011-11-22.
[4] K魻nig P J, Mostert F J. The results of a deformable warhead technology exercise[ A]. Proc of the 20th in- ternational Symposium on Ballistics[C]. Orlando:FL, 2002:23-27.
[5] Vladimir M G,Hillside. Warhead selectively releasing fragments of varied sizes and shapes[ P]. US Patent: 8061275,2011-11-22.
[6] 谭多望,张振宇,王志兵,等. 爆炸变形战斗部模型 试验研究[J]. 爆炸与冲击,2002,22(3):247-251. Tan Duowang,Zhang Zhenyu,Wang Zhibing,et al. In- vestigation of a detonatively deformable warhead[ J]. Explosion and Shock Waves,2002,22(3):247-251.
[7] 曾新吾,张振宇,王志兵,等. 可变形装药对外部辅 助装药爆轰响应的研究[ J]. 爆炸与冲击,1999,19 (增刊):391-394. Zeng Xinwu, Zhang Zhenyu, Wang Zhibing, et al. Deformation of deformable charge under primal detonation[ J]. Explosion and Shock Waves,1999,19 (suppl):391-394.
[8] 陈放,马晓青,王鹏. 爆炸变形定向战斗部壳体变形 分析[J]. 兵工学报,2004,25(6):757-760. Chen Fang, Ma Xiaoqing, Wang Peng. A study on parameters of a deformable directional warhead[ J]. Acta Armamentarii,2004,25(6):757-760.
[9] 李翔宇,卢芳云. 可变形战斗部主辅助装药殉爆研 究[J]. 火炸药学报,2007,30(5):23-31. Li Xiangyu,Lu Fangyun. A study of simulation and ex- periment of target-directed deformable warhead mode [J]. Chinese Journal of Explosives and Propellants, 2007,30(5):23-31.
[10] 龚柏林,卢芳云,李翔. D 型预制破片战斗部破片飞 散过程的数值模拟[ J]. 弹箭与制导学报,2010,30 (1):88-94. Gong Bailin,Lu Fangyun,Li Xiangyu. Simulation and study on the fragment ejection process of premade D- shape warhead [ J]. Journal of Projectile, Rockets, Missiles and Guidance,2010,30(1):88-94.
[11] 李翔宇,卢芳云. 三种类型战斗部破片飞散的数值 模拟[J]. 火炸药学报,2007,30(1):44-48. Li Xiangyu, Lu Fangyun. Numerical simulation on fragments dispersion of three type warheads [ J]. Chinese Journal of Explosives and Propellants,2007, 30(1):44-48.


Last Update: 2012-11-26