|Table of Contents|

Panoramic Imaging and 3D Reconstruction Based onSparse Image Volume


Research Field:
Publishing date:


Panoramic Imaging and 3D Reconstruction Based onSparse Image Volume
JIANG Wei1SONG Zhen-dong 2WEI Shi-heng 1
1. State Key Laboratory of Industrial Control Technology,Zhejiang University,Hangzhou 310027,China;2. College of Information Sciences and Technology,Heilongjiang University,Haerbin 150080,China
panoramic 3D reconstructionpanoramasparse image volumemulti-baseline algorithmscamera selection
TP391. 4;TP242. 6
A new approach for obtaining a dense panorama image and 3D depth information aboutpanoramic(360°) environments is presented here. A sparse spatio-temporal volume is obtained byrotating a noncentral image acquisition rig to collect the panorama. By using the multi-baseline stereotechnique on the sparse spatio-temporal volume, the panoramic depth map is estimated and thepanorama image with the same spatial resolution as the original regular images is generated. The newapproach produces better results than previous approaches and shortens acquisition time of regularimages by enlarging the rotational angular interval. Experimental results show that this approach canincrease imaging speed 45 times,decrease root-mean-square error( RMSE) over 95%,and producehigh quality panorama image and panoramic 3D reconstruction.


[1]Baker S, Nayar S K. A theory of single-viewpointcatadioptric image formation[ J]. International Journalof Computer Vision,1999,35(2):1-99.
[2] Yi S Y,Ahuja N. An omnidirectional stereo vision systemusing a single camera[A]. Proceedings of InternationalConference on Pattern Recognition [ C]. Hong Kong,China:IEEE Press,2006:29-38.
[3] Cheng S E. Quicktime VR—An image-based approachto virtual environment navigation[ A]. Proceedings ofACM Siggraph [ C ]. Los Angeles, CA, US: ACMSiggraph,1995:29-38.
[4] Szeliski R. Video mosaics for virtual environment[ J].IEEE Computer Graphics and Applications,1996,16(3):22-30.
[5] Kang S B,Szeliski R. 3-D scene data recovery usingomnidirectional multibaseline stereo[ J]. InternationalJournal of Computer Vision,1997,25(2):167-183.
[6] Alex R A,Dani L,Shmuel P. Dynamosaicing:mosaicingof dynamic scenes[ J]. IEEE Transactions on PatternAnalysis and Machine Intelligence, 2007, 29 ( 10):1789-1801.
[7] Jiang W,Sugimoto S,Okutomi M. Panoramic 3D recon-struction using rotational stereo camera with simpleepipolar constraints [ A ]. Proceedings of IEEEComputer Society Conference on Computer Vision andPattern Recognition[C]. New York,USA:IEEE Press,2006:371-378.
[8] Li Y,Shum H Y,Tang C K. A stereo reconstruction frommulti-perspective panoramas[J]. IEEE Transactions onPattern Analysis and Machine Intelligence, 2004, 26(1):45-62.
[9] Li R,Yan L,Di L,et al. A new ground-based stereopanoramic scanning system [ A ]. Proceedings ofInternational Archives of the Photogrammetry,RemoteSensing and Spatial Information Sciences[C]. Beijing,China:ISPRS,2008:723-727.
[10] Peleg S, Ben-Ezra M, Y Pritch. Omnistereo: panoramicstereo imaging[J]. IEEE Transactions on Pattern Analysisand Machine Intelligence,2001,23(3):279-290.
[11] Okutomi M, Katayama Y, Oka S. A simple stereoalgorithm to recover precise object boundaries andsmooth surfaces[J]. International Journal of ComputerVision,2002,47(1-3):261-273.
[12] Makadial A, Geyer C, Daniilidis K. Correspondence-free structure from motion[J]. International Journal ofComputer Vision,2007,72(3):311-327.
[13] Okutomi M,Kanade T. A multiple-baseline stereo[J].IEEE Transactions on Pattern Analysis and MachineIntelligence,1993,15(4):353-363.


Last Update: 2012-11-26