|Table of Contents|

Cooperative Task Allocation for Multiple UAVs Based on Improved Multiobjective Quantumbehaved Particle Swarm Optimization Algorithm

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2012年06期
Page:
0-
Research Field:
Publishing date:

Info

Title:
Cooperative Task Allocation for Multiple UAVs Based on Improved Multiobjective Quantumbehaved Particle Swarm Optimization Algorithm
Author(s):
SHI Zhan12CHEN Qingwei1
1.School of Automation,NUST,Nanjing 210094,China; 2.28th Research Institute of China Electronics Technology Group Corporation,Nanjing 210007,China
Keywords:
multiple unmanned aerial vehiclesmultiobjective optimizationquantumbehaved particle swarm optimizationtask allocationautonomous selection
PACS:
TP391;V279
DOI:
-
Abstract:
To accomplish ordered missions with the least cost and most benefit in given time,a multiobjective optimization model for cooperative task allocation of multiple unmanned aerial vehicles(UAVs)is established.An improved multiobjective quantumbehaved particle swarm optimization algorithm is used to solve the optimal task allocation scheme.An autonomous selection criterion for optimal allocation scheme choice in the obtained optional schemes is defined.The optimal allocation schemes solved by the multiobjective particle swarm optimization,the multiobjective evolutionary algorithm and the algorithm in this paper are contrastly analyzed.The simulation results show the proposed approach can solute the problem fast,and the performance of the task allocation scheme of this approach is better than others.

References:

[1]Rasche C,Stern C,Kleinjohann L,et al.Rolebased path planning and task allocation with exploration tradeoff for UAVs[A].2010 11th International Conference on Control Automation Robotics & Vision[C].Singapore:IEEE Press,2010:417-422.
[2]叶媛媛.多UCAV协同任务规划方法研究[D].长沙:国防科学技术大学机电工程与自动化学院,2005:1-133.
[3]Shima T,Rasmussen S J,Sparks A G.Multiple task assignments for cooperating uninhabited aerial vehicles using genetic algorithms[J].Computers and Operations Research,2006,33(11):3252-3269.
[4]李炜,张伟.基于粒子群算法的多无人机任务分配方法[J].控制与决策,2010,25(9):1359-1363,1368. Li Wei,Zhang Wei.Method of task allocation of multiUAVs based on particles swarm optimization[J].Control and Decision,2010,25(9):1359-1363,1368.
[5]敏,魏瑞轩,冯志明.基于差分进化算法的异构多无人机任务分配[J].系统仿真学报,2010,22(7):1706-1710. Song Min,Wei Ruixuan,Feng Zhiming.Cooperative task assignment for heterogeneous multiUAVs based on differential evolution algorithm[J].Journal of System Simulation,2010,22(7):1706-1710.
[6]龙涛.多UCAV协同任务控制中分布式任务分配与任务协调技术研究[D].长沙:国防科学技术大学机电工程与自动化学院,2006:1-162.
[7]施展,陈庆伟.突发情况下多无人机协同任务重分配方法研究[A].2009年中国智能自动化会议[C].南京:江苏电子音像出版社,2009:331-336. 
[8]Shi Zhan,Chen Qingwei,Li Sheng,et al.Cooperative task allocation for multiple mobile robots based on multiobjective optimization method[A].2010 the 3rd IEEE International Conference on Computer Science and Information Technology[C].Chengdu,China:IEEE Press,2010:484-489. 
[9]Abrahams P,Balart R,Bymes J S,et al.Maap:The military aircraft allocation planner[A].Proceedings of the 1998 IEEE World Congress on Computational Intelligence[C].Anchorage,USA:IEEE Press,1998:336-341.
[10]施展,陈庆伟.基于量子行为特性粒子群和自适应网格的多目标优化算法[J].信息与控制,2011,40(2):214-220,226. Shi Zhan,Chen Qingwei.Multiobjective optimization algorithm based on quantumbehaved particle swarm and adaptive grid[J].Information and Control,2011,40(2):214-220,226.
[11]吴祥兴,陈忠.混沌学导论[M].上海:上海科学技术文献出版社,1997. 
[12]Coello C A C,Pulido G T,Lechuga M S.Handling multiple objectives with particle swarm optimization[J].IEEE Transactions on Evolutionary Computation,2004,8(3):256-279.
[13]Deb K,Pratap A,Agarwal S,et al.A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.

Memo

Memo:
-
Last Update: 2012-12-29