|Table of Contents|

Study on generation of shock compression meso-mechanic simulation model for particle metal materials

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2013年02期
Page:
219-
Research Field:
Publishing date:

Info

Title:
Study on generation of shock compression meso-mechanic simulation model for particle metal materials
Author(s):
Qiao LiangZhang XianfengHe YongShi AnshunZhang JiangZhang Yanguo
Ministerial Key Laboratory of ZNDY,NUST,Nanjing 210094,China
Keywords:
particle metal materials shock compression meso-mechanic finite element simulation
PACS:
O383
DOI:
-
Abstract:
Based on the mesoscale structural characteristics of particle metal materials,several control parameters including the particle shape,the particle size and the particle position are introduced to describe the meso-scale characteristics.Methods of the random number generation and the intelligent optimization algorithm are adopted incorporatedly with the SEM photograph and the statistical law of the material to make the simulation model gradually approaching to the real particle distribution in meso-scale.The shock compression simulations are conducted on the typical particle metal material aluminium under different total mass degrees.Hugoniot parameters obtained from the simulation are in a good agreement with the experiment.The result shows that the randomly generated simulation model meets the statistical laws and can reproduce the distribution of real particles.The method can provide simulation model for the further numerical research on the particle metal material in meso-scale.

References:

[1] 杨卫.细观力学和细观损伤力学[J].力学进展,1992,22(1):1-9.
Yang Wei.Meso mechanics and meso damage mechanics[J].Advances in Mechanics,1992,22(1):1-9.
[2]黄克智,黄永刚.固体本构关系[M].第1版.北京:清华大学出版社,1999.
[3]张研,张子明.材料细观力学[M].北京:科学出版社,2008.
[4]张先锋,赵晓宁.多功能含能结构材料研究进展[J].含能材料,2009,17(6):731-739.
Zhang Xianfeng,Zhao Xiaoning.Review on multifunctional energetic structural materials[J].Chinese Journal of Energetic Materials,2009,17(6):731-739.
[5]张先锋,赵晓宁,乔良.反应金属冲击反应过程的理论分析[J].爆炸与冲击,2010,30(2):145-151.
Zhang Xianfeng,Zhao Xiaoning,Qiao Liang.Study on shock-induced chemical reaction of reactive metal[J].Explosion and Shock Wave,2010,30(2):145-151.
[6]Thadhani N N,Graham R A,Royal T,et al.Shock-induced chemical reactions in titanium-silicon powder mixtures of different morphologies:Time-resolved pressure measurements and materials analysis[J].J Appl Phys,1997,82(3):1113-1128.
[7]Boslough M B.A thermochemical model for shock-induced reactions(heat detonations)in solids[J].J Chem Phys,1990,92:1839-1848.
[8]Benson D J.An analysis by direct numerical simulation of the effects of particle morphology on the shock compaction of copper powder[J].Modelling Simul Mater Sci Eng,1994,2:535-550.
[9]Benson D J,Tong W,Ravichandran G.Particle-level modelling of dynamic consolidation of Ti-SiC powders[J].Modelling Simul Mater Sci Eng,1995,3:771-796.
[10]Benson D J,Conley P.Eulerian finite-element simulations of experimentally acquired HMX microstructures[J].Modelling Simul Mater Sci Eng,1999,7:333-354.
[11]Austin R A.Numerical simulation of the shock compression of microscale reactive particle systems[D].Georgia,USA:George W Woodruff School of Mechanical Engineering,Georgia Institute of Technology,2005.
[12]Austin R A.Modeling shock wave propagation in discrete Ni/Al powder mixture[D].Georgia,USA:George W Woodruff School of Mechanical Engineering,Georgia Institute of Technology,2010.
[13]Eakins D E,Thadhani N N.Mesoscale simulation of the configuration-dependent shock-compression response of Ni+Al powder mixtures[J].Acta Materialia,2008,56:1496-1510.
[14]Eakins D E,Thadhani N N.Discrete particle simulation of shock wave propagation in a binary Ni+Al powder mixture[J].J Appl Phys,2007,101(043508):1-11.
[15]Eakins D E.Role of heterogeneity in the chemical and mechanical shock-response of nickel and aluminum powder mixtures[D].Georgia,USA:George W Woodruff School of Mechanical Engineering,Georgia Institute of Technology,2007.
[16]Kuhn M R.Heterogeneity and patterning in the quasi-static behaviour of granular materials[J].Granular Matter,2003,4(4):155-166.
[17]Granqvist C G,Buhrman R A.Ultrafine metal particles[J].J Appl Phys,1976,47(5):2200-2219.
[18]杨秀英,赵艳红,彭晓,等.Cr,Al颗粒尺寸对Ni-Cr-Al复合镀层氧化行为的影响[J].中国腐蚀与防护学报,2011,31(3):190-195.
Yang Xiuying,Zhao Yanghong,Peng Xiao,et al.Size effect of Cr and Al particle on the oxidation behaviour of electrodeposited Ni-Cr-Al composite coatings[J].Journal of Chinese Society for Corrosion and Protection,2011,31(3):190-195.
[19]Stanley P M.LASL shock hugoniot data[M].Los Angeles,USA:University of California Press,1980.
[20]李伟,宋卫东,宁建国.考虑粒子分布特征的复合材料细观力学方法[J].固体力学学报,2010,31(4):339-345.
Li Wei,Song Weidong,Ning Jianguo.A composite micromechanics method considering the grain size probability distribution[J].Chinese Journal of Solid Mechanics,2010,31(4):339-345.
[21]何源,何勇,潘旭超,等.含能破片冲击引爆屏蔽炸药研究[J].南京理工大学学报,2011,35(2):187-193.
He Yuan,He Yong,Pan Xuchao,et al.Initiation of shielded high explosive impacted by energetic fragment[J].Journal of Nanjing University of Science and Technology,2011,35(2):187-193.

Memo

Memo:
-
Last Update: 2013-04-30