|Table of Contents|

Survey of sparsity constrained hyperspectral unmixing

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2013年04期
Page:
486-
Research Field:
Publishing date:

Info

Title:
Survey of sparsity constrained hyperspectral unmixing
Author(s):
Song Yigang1Wu Zebin12Wei Zhihui1Sun Le1Liu Jianjun1
1.School of Computer Science and Engineering; 2.Lianyungang Institute,NUST,Lianyungang 222006,China
Keywords:
hyperspectral sparsity unmixing
PACS:
TP391
DOI:
-
Abstract:
On the basis of analyzing traditional linear hyperspectral unmixing methods based on the geometrical prior and the statistical prior,sparsity constrained hyperspectral unmixing models and algorithms are studied.The methods of sparsity constrained hyperspectral unmixing based on spectral library and those based on non-negative matrix factorization are reviewed and compared with each other.The effectiveness of the sparse hyperspectral unmixing is demonstrated.The corresponding perspectives on the future are presented.

References:

[1] 童庆禧,张兵,郑兰芬.高光谱遥感——原理、技术与应用[M].北京:高等教育出版社,2006.
[2]Iordache M D,Plaza A,Dias J B.On the use of spectral libraries to perform sparse unmixing of hyperspectral data[A].IEEE GRSS Workshop on Hyperspectral Image and Signal Processing:Evolution in Remote Sensing(WHISPERS)[C].Reykjavik,Iceland:IEEE Press,2010:1-4.
[3]Iordache M D,Dias J B,Plaza A.Unmixing sparse hyperspectral mixtures[EB/OL].http://www.umbc.edu/rssipl/people-/aplaza/Papers/Conferences/2009.IGARSS.Sparse.pdf.2009.
[4]Dias J B,Plaza A.Hyperspectral unmixing geometrical,statistical and sparse regression-based approaches[A].Proceedings of SPIE:Image and Signal Processing for Remote Sensing XVI[C].Toulouse,France:SPIE Press,2010.
[5]Masalmah Y,VelezReyes M.A full algorithm to compute the constrained positive matrix factorization and its application in unsupervised unmixing of hyperspectral imagery[A].Proceedings of SPIE[C].Orlando,USA:SPIE Press,2008.
[6]Yang Zuyuan,Chen Xi,Zhou Guoxu,et al.Spectral unmixing using nonnegative matrix factorization with smoothed L0 norm constraint[A].Proceedings of SPIE:Multispectral Image Acquisition and Processing[C].Yichang,China:SPIE Press,2009.
[7]Nascimento J M,Dias J B.Does independent component analysis play a role in unmixinghyperspectraldata[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(1):175-187.
[8]Nascimento J M,Dias J B.Hyerspectralunmixing algorithm via dependent component analysis[A].IEEE International Geoscience and Remote Sensing Symposium[C].Barcelona,Spain:IEEE Press,2007:4033-4036.
[9]Jia Sen,Qian Yuntao.Spectral and spatial complexity-based hyperspectral unmixing[J].IEEE Transactions on Geoscience and Remote Sensing,2007,45(12):3867-3879.
[10]Dobigeon N,Tourneret J Y,Chang C I.Semi-supervised linear spectral unmixing using a hierarchical Bayesian model for hyperspectral imagery[J].IEEE Transac-tions on Signal Processing,2008,56(1):2684-2695.
[11]Moussaoui S,Hauksdttir H,Schmidt F,et al.On the decomposition of Mars hyperspectral data by ICA and Bayesian positive source separation[J].Neurocom-puting,2008,71(10-12):2194-2208.
[12]Boardman J W,Kruse F A,Green R O.Mapping target signatures via partial unmixing of AVIRIS data[A].Fifth JPL Airborne Earth Science Workshop[C].Pasadena,Canada:JPL Press,1995:23-26.
[13]Winter M.N-FINDR:An algorithm for fast autonomous spectral endmember determination in hyperspectral data[A].SPIE Imaging Spectrometry V[C].Washington:SPLE Pub,1999:266-275.
[14]Nascimento J M,Dias J M.Vertex component analysis:A fast algorithm to unmixhyperspectral data[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(4):898-910.
[15]Chang C I,Wu C C,Liu W,et al.A new growing method for simplex-based endmember extraction algorithm[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44:2804-2819.
[16]Zortea Maciel,Plaza Antonio.Spatial preprocessing for endmember extraction[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(8):2679-2693.
[17]Miao Lidan,Qi Hairong.Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization[J].IEEE Transactions on Geoscience and Remote Sensing,2007,45(3):765-777.
[18]Chi C Y,Chan T H,Ma W K.A convex analysis based minimum-volume enclosing simplex algorithm for hyperspectral unmixing[A].IEEE International Conference in Acoustics,Speech and Signal Porcessing[C].Taiwan,China:IEEE Press,2009.
[19]Li J,Dias J B.Minimum volume simplex analysis:a fast algorithm to unmixhyperspectral data[A].IEEE International Geoscience and Remote sensing Symposium[C].Boston,USA:IEEE Press,2008.
[20]Dias J B.A variable splitting augmented Lagrangian approach to linear spectral unmixing[J].IEEE Hyperspectral Image and Signal Processing:Evolution in Remote Sensing,2009:1-4.
[21]耿修瑞,赵永超,周冠华.一种利用单形体体积自动提取高光谱图像端元的算法[J].自然科学进展,2006,16(9):1196-120.
Gen Xiurui,Zhao Yongchao,Zhou Guanhua.A single complex volume algorithm automatically extracting hyperspectral image endmember[J].Progress in Natural Science,2006,16(9):1196-120.
[22]罗文斐,钟亮,刘翔,等.基于零空间最大距离的高光谱图像端元提取算法[J].自然科学进展,2008,18(11):1341-1245.
Luo Wenpei,Zhong Liang,Liu Xiang,et al.Hyperspectral image endmember extraction algorithm based on the maximum distance of the null space[J].Progress in Natural Science,2008,18(11):1341-1245.
[23]褚海峰,翟中敏,赵银娣,等.一种多/高光谱遥感图像端元提取的凸锥分析算法[J].遥感学报,2007,11(4):460-467.
Chu Haifeng,Zhai Zhongmin,Zhao Yindi,et al.A Convex cone analysis method for endmember selection of multispectral and hyperspectral images[J].Journal of Remote Sensing,2007,11(4):460-467.
[24]Yu Yue,Guo Shan,Sun Weidong.Minimun distance constrained nonnegative matrix factorization for the Endmember extraction of hyperspectral images[A].Proc SPIE[C].Wuhan,China:SPIE Press,2007.
[25]Tao Xuetao,Wang Bin,Zhang Liming,et al.A new scheme for decomposition of mixed pixels based on nonnegative matrix factorization[A].IEEE International Geoscience and Remote sensing Symposium[C].Barcelona,Spain:IEEE Press,2007:1759-1762.
[26]王立国,张晶.基于线性光谱混合模型的光谱解混改进模型[J].光电子激光.2010,21(8):1222-1226.
Wang Liguo,Zhang Jing.An improved spectral unmixing modeling based on linear spectral mixing modeling[J].Journal of Optoelectronics Laser,2010,21(8):1222-1226.
[27]Dias J B.Alternating direction algorithms for constrained sparse regression:application to hyperspectral unmixing[A].First IEEE GRSS Workshop on Hyperspectral Image and Signal Processing[C].Grenoble,France:IEEE Press,2009.
[28]Sun Le,Wu Zebin,Wei Zhihui.A novel L1/2 sparse regression method for hyperspectral unmixing[J].International Journal of Remote Sensing,2012.
[29]Guo Zhaohui,Wittman Todd,Osher Stanley.L1 unmixing and its application to hyperspectral image enhancement[A].Processings of SPIE:Algorithms and Technologies for Multispectral,Hyperspectral,and Ultraspectral Imagery[C].Orlando,Florida,USA:SPIE Press,2009.
[30]Bobin J,Moudden Y,Starck J L,et al.Sparsity constraints for hyperspectral data analysis:linear mixture model and beyond[A].Proceedings of SPIE:Wavelets XIII[C].San Diego,Canada:SPIE Press,2009.
[31]Iordache M D,Plaza A,Dias J B.Recent developments in sparse hyperspectral unmixing[A].IEEE Interna-tional Geoscience and Remote Sensing Symposium(IGARSS'10)[C].Hawaii,USA:IEEE Press,2010.
[32]Iordache M D.Umixing sparse hyperspectral mixtures[A].First IEEE GRSS Workshop on Hyperspectral Image and Signal Processing[C].Grenoble,France:IEEE Press,2009.
[33]Iordache M D,Dias J B,Plaza A.Total variation regulati-zation in sparse hyperspectral unmixing[A].Hyperspe-ctral Image and Signal Processing:Evolution in Remote Sensing[C].Lisbon,Portugal:IEEE Press,2011:1-4.
[34]Jia Sen,Qian Yuntao.Constrained nonnegative matrix factorization for hyperspectral unmixing[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(1):161-173.
[35]Qian Y,Jia S,Zhou J,Robles-Kelly A.L1/2 sparsity constrained nonnegative matrix factorization for hyperspectral unmixing[J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(11):4282-4297.
[36]Liu Jianjun,Wu Zebin,Wei Zhihui.A novel sparsity constrained nonnegative matrix factorization for hyperspectral unmixing[A].IEEE International Geoscience and Remote Sensing Symposium(IGARSS'2012)[C].Munich,Germany:IEEE Press,2012.

Memo

Memo:
-
Last Update: 2013-08-31