|Table of Contents|

System identification method for Hammerstein model based on improved differential evolution algorithm

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2013年04期
Page:
536-
Research Field:
Publishing date:

Info

Title:
System identification method for Hammerstein model based on improved differential evolution algorithm
Author(s):
Xiong Weili12Chen Minfang2Wang Xiao2Xu Baoguo2
1.Key Laboratory of Advanced Process Control for Light Industry(Ministry of Education); 2.School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China
Keywords:
differential evolution algorithm adequate variation nonlinear system identification Hammerstein model
PACS:
TP18
DOI:
-
Abstract:
For the nonlinear system of Hammerstein model,a method for nonlinear system identification is proposed based on the differential evolution algorithm(DE).The problem of nonlinear system identification is transformed into an optimization problem in parameter space.In order to enhance the performance of the DE identification,this paper proposes an adaptive mutation differential evolution algorithm(MDE).The parameter of the Hammerstein model in early stage can keep the individuals diversifying to avoid premature convergence.The mutation rate is gradually reduced so as not to damage the optimal solution.The MDE algorithm is more accurate than the DE,and the MDE algorithm has the higher nonlinear recognition ability.

References:

[1] Tan Aihui,Wong Hinkwan,Godfrey K.Identification of a Wiener-Hammerstein system using an incremental nonlinear optimization technique[J].Control Engineering Practice,2012,20(11):1140-1148.
[2]Narendre K,Gallman P.An iterative method for the identification of nonlinear systems using a Hammerstein model[J].IEEE Trans on Automatic Control,1996,11(3):546-550.
[3]林星卫,张惠娣,刘士荣,等.应用粒子群优化算法辨识Hammerstein模型[J].仪器仪表学报,2006,27(1):76-79.
Lin Xingwei,Zhang Huidi,Liu Shirong,et al.The Hammerstein Model Identification Based on PSO[J].Chinese Journal of Scientific Insturnent,2006,27(1):76-79.
[4]沈佳宁,孙俊,须文波,等.运用QPSO算法进行系统辨识的研究[J].计算机工程与应用,2009,45(9):67-70.
Shen Jianing,Sun Jun,Xu Wenbo,et al.System identification based on QPSO algorithm[J].Computer Engineering and Applications,2009,45(9):67-70.
[5]Storn R,Price K.Differential evaluation:A simple and efficient adaptive scheme for global optimization over continuous spaces[J].Global Optimization,1997(11):341-359.
[6]张鸣,韦国勋,杨煜普.神经网络与DE算法在自适应滤波中的应用[J].自动化仪表,2010,31(4):8-11.
Zhang Ming,Wei Guoxun,Yang Yipu.Application of neural network and differential evolution algorithm in adaptive filtering[J].Process Automation Instrumenta-tion,2010,31(4):8-11.
[7]肖迪,葛启承,林锦国,等.一种双种群遗传粒子群算法及在SMB优化中的应用[J].南京理工大学学报,2012,36(1):31-36.
Xiao Di,Ge Qicheng,Lin Jingguo,et al.Double populations genetic and particle swarm algorithm and its application in SMB optimization[J].Journal of Nanjing University of Science and Technology,2012,36(1):31-36.
[8]徐庆征,王磊,何宝民,等.基于当前最优解的反向差分进化算法求解函数优化问题[J].应用科学学报,2011,29(3):309-314.
Xu Qingzheng,Wang Lei,He Baomin,et al.Opposition-based differential evolution using the current optimum for function optimization[J].Journal of Applied Sciences— Electronics and Information Engineering,2011,29(3):309-314.
[9]Tang H S,Xue S T,Fan C X.Differential evolution strategy for structural system identification[J].Computers and Structures,2008,86(21-22):2004-2012.
[10]刘若辰,焦李成,雷七峰,等.一种新的差分进化约束优化算法[J].西安电子科技大学学报(自然科学版),2011,38(1):47-52.
Liu Ruochen,Jiao Licheng,Lei Qifeng,et al.New differential evolution constrained optimization algorithm[J].Journal of Xidian University(Natural Science Edition),2011,38(1):47-52.
[11]宁桂英,周永权.基于优进策略的新差分进化算法动力学模型参数的估计[J].计算机与应用化学,2008,25(5):524-527.
Ning Guiying,Zhou Yongquan.Estimation of kinetic parameters based on eugenic evolution strategy differential evolution algorithms[J].Computers and Applied Chemistry,2008,25(5):524-527.
[12]颜学锋,余娟,钱锋,等.基于改进差分进化算法的超临界水氧化动力学参数估计[J].华东理工大学学报(自然科学版),2006,32(1),94-97.
Yan Xuefeng,Yu Juan,Qian Feng,et al.Parameter estimation of oxidation in supercritical water based on modified differential evolution[J].Journal of East China University of Science and Technology(Natural Science Edition),2006,32(1):94-97.
[13]Harnischmacher G,Marquardt W.Nonlinear model predictive control of multivariable processes using block-structured models[J].Control Engineering Practice,2007,15(10):1238-1256.
[14]Francisco J.Predictive control of solid oxide fuel cells using fuzzy Hammerstein models[J].Journal of Power Sources,2006,158(1):245-253.
[15]胡德文.非线性与多变量系统相关辨识[M].长沙:国防科技大学出版社,2001.

Memo

Memo:
-
Last Update: 2013-08-31