|Table of Contents|

Modeling of actuator in load simulator for servo systems

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2013年04期
Page:
579-
Research Field:
Publishing date:

Info

Title:
Modeling of actuator in load simulator for servo systems
Author(s):
Wang Li1Qian Lingfang1Gao Qiang1Hou Yuanlong1Guo Qi2
1.School of Mechanical Engineering,NUST,Nanjing 210014,China; 2.Wuhan Military Representative Office,General Armament Department,Wuhan 430073,China
Keywords:
load simulators valve-controlled motors electro-hydraulic servo system fuzzy neural network grey prediction
PACS:
TP273
DOI:
-
Abstract:
The modeling methods of valve-controlled motor,which is the actuator in load simulator for servo system,are studied here.Through the theoretical derivation about the torque transfer function of valve-controlled motor electro-hydraulic servo system,the mechanism modeling is obtained.The fuzzy neural network(FNN)and grey prediction theory modeling(GM)are applied to achieve the intelligent models.Simulation results of several modeling show that the mechanism modeling has bad accuracy and poor generalization ability.Subtractive clustering-based fuzzy neural network modeling and grey prediction modeling have good accuracy.However,the grey prediction theory consumes small calculated amount,and it can be used to control the dynamical loads.The research results lays the foundation to improve the accuracy of torque control in servo system load simulator.

References:

[1] 张彦斌,张宁.火炮控制系统及原理[M].北京:北京理工大学出版社,2009:167-168.
[2]曹健,李尚义,马建设,等.新型仿真转台用连续回转伺服马达[J].南京理工大学学报,2001,25(2):152-155.
Cao Jian,Li Shangyi,Ma Jianshe,et al.A new continuous rotary electro-hydraulic servomotor applied to simulator[J].Journal of Nanjing University of Science and Technology,2001,25(2):152-155.
[3]Kayacan E,Kaynak O.Single-step ahead prediction based on the principle of concatenation using grey predictors[J].Expert Systems with Applications,2011,38(8):9499-9505.
[4]Shen Y L,Cao Y,Li T S.Study on electro hydraulic servo loading system using fuzzy model based predictive control with multi-step linearization[A].Proceedings of the World Congress on Intelligent Control and Automation[C].Shanghai,China:IEEE,2002:312-315.
[5]He S,Sepehri N.Modeling and prediction of hydraulic servo actuators with neural networks[A].Proceedings of American Control Conference[C].San Diego:IEEE,1999:3708-3712.
[6]申越,季新源,袁亚雄.灰色系统理论在火炮内弹道性能变化量中的应用[J].南京理工大学学报,2005,29(5):529-531.
Shen Yue,Ji Xinyuan,Yuan Yaxiong.Application of grey-system theory in interior ballistics performance's variety of gun[J].Journal of Nanjing University of Science and Technology,2005,29(5):529-531.
[7]楼俐,徐诚,张飞猛.灰色系统理论及量化分析法在枪械方案设计评价中的应用[J].南京理工大学学报,2010,34(5):581-585.
Lou Li,Xu Cheng,Zhang Feimeng.Application of grey-system theory and quantitative analysis method to scheme design evaluation of small arms[J].Journal of Nanjing University of Science and Technology,2010,34(5):581-585.
[8]吴振顺.液压控制系统[M].北京:高等教育出版社,2008:56-60.
[9]段群杰,张铭均.基于减法聚类和自适应模糊神经网络方法的运动规划器设计[J].兵工学报,2007,28(12):1533-1536.
Duan Qunjie,Zhang Mingjun.Design of motion planner based on subtraction clustering and adaptive fuzzy neural network[J].Acta Armamentar Ⅱ,2007,28(12):1533-1536.
[10]Jelali M,Kroll A.Hydraulic Servo-system modelling,identification and control[M].London:Springer-Verlag London Limited,2003:132-134.

Memo

Memo:
-
Last Update: 2013-08-31