|Table of Contents|

Prediction of acceleration peak based on radial basis function network

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2013年05期
Page:
761-
Research Field:
Publishing date:

Info

Title:
Prediction of acceleration peak based on radial basis function network
Author(s):
Liu WeiSun XiaoxiaShen RuiqiYe YinghuaLi Chuangxin
School of Chemical Engineering,NUST,Nanjing 210094,China
Keywords:
impact dynamic Hopkinson pressure bars acceleration radial basis function
PACS:
O347.3
DOI:
-
Abstract:
In order to predict the peak,type and duration of acceleration more exactly,a novel method is proposed based on the radial basis function(RBF)neural network model for the free Hopkinson pressure bar overload technique.Pulse shaper experiments are carried out under different striking velocities and sizes of the LY12 aluminium shaper,and acceleration data are obtained and normalized to(0,1)and used for the RBF network learning.Five sample data are selected randomly to predict the acceleration peaks with the trained network.It is concluded that the presented network is credible to predict the peak and duration of acceleration according to the striking velocity and the size of the shaper.

References:

[1] Kolsky H.An investigation of the mechanical properties of materials at very high rates of loading[J].Proceedings of the Physical Society(Section B),1949,62(11):676-700.
[2]Chen W,Ravichandran G.Dynamic compressive failure of a glass ceramic under lateral confinement[J].Journal of the Mechanics and Physics of Solids,1997,45(8):1303-1328.
[3]Li Qingming,Meng H.About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test[J].International Journal of Solids and Structures,2003,40(2):343-360.
[4]Frew D J,Forrestal M J,Chen W A.Split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials[J].Experimental Mechanics,2002,42(1):93-106.
[5]王永刚,施绍裘,王礼立.采用改进的SHPB方法对泡沫铝动态力学性能的研究[J].实验力学,2003,18(2):257-264.
Wang Yonggang,Shi Shaoqiu,Wang Lili.An improved SHPB method and its application in the study of dynamic mechanical behavior of aluminum foams[J]Journal of Experimental Mechanics,2003,18(2):257-264.
[6]王宝珍,胡时胜.猪后腿肌肉的冲击压缩特性实验[J].爆炸与冲击,2010,30(1):33-38.
Wang Baozhen,Hu Shisheng.Dynamic compression experiments of porcine ham muscle[J].Explosion and Shock Waves,2010,30(1):33-38.
[7]张学舜,沈瑞琪.火工品动态着靶模拟仿真技术研究[J].火工品,2003(4):1-4.
Zhang Xueshun,Shen Ruiqi.Study on dynamic touch-target analog simulation technique for initiating explosive devices[J].Initiators and Pyrotechnics,2003(4):1-4.
[8]蔡吉生,沈瑞琪,叶迎华,等.高加速度过载下延期元件的失效机理研究[J].火工品,2006(5):8-14.
Cai Jisheng,Shen Ruiqi,Ye Yinghua,et al.Failure mechanism of delay element loaded with high acceleration[J].Initiators and Pyrotechnics,2006(5):8-14.
[9]叶婷,邓琼.基于Hopkinson压杆的延长冲击波脉冲升时的数值计算[J].兵工学报,2009,30(S2):163-168.
Ye Ting,Deng Qiong.Numerical calculation of pulse rise-time of extensive shock wave in Hopkinson pressure bar[J].Acta Armamentatii,2009,30(S2):163-168.
[10]邓强.波形整形器在火工品高过载实验中的应用[D].南京:南京理工大学化工学院,2005.
[11]Moody J,Darken C J.Fast learning in networks of locally-tuned processing units[J].Neural Computation,1989,1(2):281-294.
[12] 王永建,周廷显.RBF 神经网络多用户检测ROLS-AWS算法的研究[J].南京理工大学学报,2005,29(2):197-201.
Wang Yongjian,Zhou Tingxian.ROLS-AWS algorithm used in RBF neural network multiuse detection[J].Journal of Nanjing University of Science and Technology,2005,29(2):197-201.
[13]Chen S.Nonlinear time series modeling and prediction using Gaussian RBF networks with enhanced clustering and RLS learning[J].Electronics Letters,1995,31(2):117-118.
[14]Meng J E,Wu S,Lu J.Face recognition with radial basis function(RBF)neural networks[J].Neural Networks,IEEE Transactions on,2002,13(3):697-710.
[15]Qin Dongmei,Guo Ping,Hu Zhaoyi,et al.Automated separation of stars and normal galaxies based on statistical mixture modeling with RBF neural networks[J].Chinese Journal of Astronomy and Astrophysics,2003,3(3):277.
[16]Forrestal M J,Togami T C,Baker W E,et al.Performance evaluation of accelerometers used for penetration experiments[J].Experimental Mechanics,2003,43(1):90-96.

Memo

Memo:
-
Last Update: 2013-10-31