|Table of Contents|

Super-resolution reconstruction algorithm based on multi-component dictionary and sparse representation

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2014年01期
Page:
1-5
Research Field:
Publishing date:

Info

Title:
Super-resolution reconstruction algorithm based on multi-component dictionary and sparse representation
Author(s):
Liu ZiSong XiaoningYu DongjunTang Zhenmin
School of Computer Science and Engineering,NUST,Nanjing 210094,China
Keywords:
super-resolution sparse representation multi-component dictionary
PACS:
TP391.41
DOI:
-
Abstract:
In order to solve the problem of super-resolution reconstruction of single image,a hybrid approach is presented under the framework of sparse representation with multi-component dictionary.According to the image degradation model,the algorithms focus on the relationship between the low-resolution images and high-resolution images.This paper concludes that the high-resolution images can be reconstructed by the coefficients of low-resolution images in the corresponding dictionary.The sparse coefficients are obtained by the method of match pursuit based on the multi-component dictionary which indicates different structural characteristics of the image.The high-resolution images are reconstructed in the corresponding high-resolution dictionary.This paper introduces an objective and new strategy capable of efficiently guiding the image restoration.Extensive experimental studies conducted on the nature and cartoon images show the effectiveness of the proposed method.

References:

[1] Tsai R Y,Huang T.Multiple frame image restoration and registration[J].Advances in Computer Vision and Image Processing,1984(1):317-339.
[2]Rajan D,Chaudhuri S.Generalized interpolation and its application in super-resolution imaging[J].Image and Vision Computing,2001,19(13):957-969.
[3]肖泽龙,许建中,彭树生,等.基于凸集投影算法的被动毫米波图像超分辨率恢复[J].南京理工大学学报,2007,31(3):355-358.
Xiao Zelong,Xu Jianzhong,Peng Shusheng,et al.Passive millimeter-wave image super-resolution restoration based on projection onto convex sets[J].Journal of Nanjing University of Science and Technology,2007,31(3):355-358.
[4]Nguyen N,Milanfar P.Efficient generalized cross-validation with application to parametric image restoration and resolution enhancement[J].IEEE Transactions on Image Processing,2011,10(9):1299-1308.
[5]孙玉宝,韦志辉,肖亮.多形态稀疏性正则化的图像超分辨率算法[J].电子学报,2010,38(12):2898-2903.
Sun Yubao,Wei Zhihui,Xiao Liang.Multimorphology sparsity regularized image super-resolution[J].Acta Electronica Sinica,2010,38(12):2898-2903.
[6]Freeman W T,Jones T R.Example based super resolution[J].IEEE Computer Graphics and Applications,2002,22(2):56-65.
[7]Tang Yi,Yan Pingkun,Li Xuelong.Single-image super-resolution via local learning[J].International Journal of Machine Learning and Cybernetics,2011,2(1):15-23.
[8]邓承志.图像稀疏表示理论及其应用研究[D].武汉:华中科技大学电子与信息工程系,2008.
[9]Sun Jian,Tappen M.Learning non-local range Markov random field for image restoration[A].Proceedings of IEEE CVPR[C].Providence,USA:IEEE,2011:2745-2752.
[10]Chang Hong,Yeung D Y.Super-resolution through neighbor embedding[A].Proceedings of IEEE Conference on CVPR[C].Washington D C:IEEE,2004:275-282.
[11]Wright J,Ma Yi.Sparse representation for computer vision and pattern recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,98(6):1031-1044.
[12]Kim K,Kwon Y.Single-image super-resolution using sparse regression and natural image prior[J].Pattern Analysis and Machine Intelligence,2010,32(6):1127-1133.
[13]封晓强,何铁军.基于量子进化算法的交通图像稀疏分解[J].南京理工大学学报,2010,34(1):40-45.
Feng Xiaoqiang,He Tiejun.Sparse decomposition for traffic images using quantum-inspired evolutionary algorithms[J].Journal of Nanjing University of Science and Technology,2010,34(1):40-45.
[14]Yang Jianchao,Wright J.Image super-resolution as sparse representation of raw image patches[A].Proceedings of IEEE Conference on CVPR[C].Alaska:IEEE,2008:1-8.
[15]Candes E,Romberg J.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory,2006,52(2):489-509.
[16]孙玉宝,肖亮,韦志辉.基于Gabor感知多成份字典的图像稀疏表示算法研究[J].自动化学报,2008,34(11):1379-1387.
Sun Yubao,Xiao Liang,Wei Zhihui.Sparse representations of images by a multi-component gabor perception dictionary[J].Acta Automatica Sinica,2008,34(11):1379-1387.

Memo

Memo:
-
Last Update: 2014-02-28