|Table of Contents|

Auxiliary model recursive least square algorithm based multi-signal identification of Hammerstein model


Research Field:
Publishing date:


Auxiliary model recursive least square algorithm based multi-signal identification of Hammerstein model
Jia Li1Yang Aihua1Qiu Minsen2
1.Shanghai Key Laboratory of Power Station Automation Technology,College of Mechatronics Engineering and Automation,Shanghai University,Shanghai 200072,China; 2.Faculty of Engineering,National University of Singapore,Singapore 119260
Hammerstein models auxiliary models least square algorithm parameter identification multi-signals
A multi-signal identification algorithm based on auxiliary model recursive least square algorithm for Hammerstein model with process noise is proposed here.The multi-signals are used to realize the identification and separation of Hammerstein model.The concept of auxiliary model is employed into the least square algorithm to obtain the unbiased estimation of the Hammerstein model.The simulation results show the efficiency of the proposed method.


[1] 侯忠生,许建新.数据驱动控制理论及方法的回顾和展望[J].自动化学报,2009,35(6):650-667.
Hou Zhongsheng,Xu Jianxin.On data-driven control theory:the state of the art and perspective[J].Acta Automatica Sinica,2009,35(6):650-667.
[2]Fang F,Reed E,Dickason D K,et al.Technology review of multi-agent systems and tools[R].Navy Personnel Research Studies and Technology Millington TN,2005.
[3]Chen H F.Pathwise convergence of recursive identification algorithms for Hammerstein systems[J].IEEE Transactions on Automatic Control,2004,49(10):1641-1649.
[4]Chen Xingmin.Recursive identification for MIMO Hammerstein systems[J].IEEE Transactions on Automatic Control,2010,56(4):895-902.
[5]Westwick D T,Kearney R E.Separable least squares identification of nonlinear Hammerstein models:Application to stretch reflex dynamics[J].Annals of Biomedical Engineering,2001,29(8):707-718.
[6]Sun L,Liu W,Sano A.Identification of a dynamical system with input nonlinearity[J].IEE Proceedings of Control Theory and Applications IET,1999,146(1):41-51.
[7]Wang J,Sano A,Shook D,Chen T,et al.A blind approach to closed-loop identification of Hammerstein systems[J].Int J Control,2007,80(2):302-313.
[8]Bai E W.Identification of linear systems with hard input nonlinearities of known structure[J].Automatica,2002,38(5):853-860.
[9]Krzy(·overz)ak A.On nonparametric estimation of nonlinear dynamic systems by the Fourier series estimate[J].Signal Processing,1996,52(3):299-321.
[10]Boutayeb M,Aubry D,Darouach M.A robust and recursive identification method for MISO Hammerstein model[A].Control'96,UKACC International Conference on IET[C].Washington D C:IEEE,1996:234-239.
[11]Ahmadi M,Mojallali H.Identification of multiple-input single-output Hammerstein models using Bezier curves and Bernstein polynomials[J].Applied Mathematical Modelling,2011,35(4):1969-1982.
[12]Rangan S,Wolodkin G,Poolla K.New results for Hammerstein system identification[A].Proceedings of the 34th IEEE Conference on Decision and Control.IEEE[C].Washington D C,USA:IEEE,1995:697-702.
[13]Jalaleddini K,Kearney R E.An identification algorithm for Hammerstein systems using subspace method[A].American Control Conference(ACC),2011.IEEE[C].San Francisco,USA:IEEE,2011:4793-4797.
[14]Zhu Y.Estimation of an N-L-N Hammerstein-Wiener model[J].Automatica,2002,38(9):1607-1614.
He Shanghong,Zhao Tianlin,Shi Fang.Direct parameter identification of continuous-time Hammerstein model with input/output measurement noises[J].Chinese Journal of Mechanical Engineering,2012,23(4)458-463.
[16]Ding Feng,Yang Shi,Tongwen Chen.Auxiliary model-based least-squares identification methods for Hammerstein output-error systems[J].Systems & Control Letters,2007,56(5):373-380.
[17]Sung S W.System identification method for Hammerstein processes[J].Industrial & Engineering Chemistry Research,2002,41(17):4295-4302.
Ding Feng.Auxiliary model identification idea and methods[J].Journal of Nanjing University of Information Science and Technology(Natuaal Science),2011,3(4):289-318.
Ding Feng.Convergence Analysis of Multivariable Systems Auxiliary Model Identification Method[J].Control Theory and Applications,1997,14(2):192-200.
[20]Ding F,Chen T.Combined parameter and output estimation of dual-rate systems using an auxiliary model[J].Automatica,2004,40(10):1739-1748.
[21]Ding F,Ding J.Least squares parameter estimation for systems with irregularly missing data[J].International Journal of Adaptive Control and Signal Processing,2010,24(7):540-553.
[22]Ling W M,Rivera D E.Control relevant model reduction of Volterra series models[J].Journal of Process Control,1998,8(2):79-88.
[23]Maner B R,Doyle III F J,Ogunnaike B A,et al.Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models[J].Automatica,1996,32(9):1285-1301.


Last Update: 2014-02-28