|Table of Contents|

Intelligent optimization control and its application in ammonia distillation process for soda manufacturing

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2014年01期
Page:
65-71
Research Field:
Publishing date:

Info

Title:
Intelligent optimization control and its application in ammonia distillation process for soda manufacturing
Author(s):
Yang Maying1Jin Xiaoming2Shi Xiaozhen2
1.College of Information Engineering,Zhejiang University of Technology,Hangzhou 310023,China; 2.Institute of Cyber System and Control,Zhejiang University,Hangzhou 310027,China
Keywords:
ammonia distillation predictive control intelligent control coordinated optimization control
PACS:
TP273
DOI:
-
Abstract:
In order to improve the automatic level of steamed ammonia production,save energy and reduce consumption in soda manufacture,this paper proposes an intelligent coordinated optimization control strategy for the ammonia distillation process,based on predictive control of single ammonia distillation towers.Facing the operation of ammonia process with large time delay,time-varying,multivariable coupling and parallel operation of distillation towers,the dynamic mathematical model of ammonia evaporation tower is established.Afterwards the two layer optimization control of single towers is cooperated with multi-tower intelligent coordination and optimization,the intelligent optimization control of ammonia process is thus realized.Simulation results and industrial application illustrate that the strategies achieve better control performance,reduce 0.21 kg ammonia and 16 kg steam consumptions per ton of soda.

References:

[1] 大连化工研究设计院.纯碱工学[M].北京:化学工业出版社,2004.
[2]胡书亚.氨碱厂蒸馏作业的节能降耗设计[J].纯碱工业,2006(3):17-20.
Hu Shuya.Design of energy saving and consumption reduction in distillation of ammoniasoda plant[J].Soda Industry,2006(3):17-20.
[3]王全.纯碱制造技术[M].北京:化学工业出版社,2010.
[4]左爱武.一种用于蒸氨生产的智能控制系统[D].武汉:武汉科技大学信息科学与工程学院,2004.
Zuo Aiwu.An intelligent control system used in ammonia distilling process[D].Wuhan:Information Science and Engineering College,Wuhan University of Science and Technology,2004.
[5]高昆,张树吉,金晓明.先进控制技术在纯碱装置轻灰煅烧过程中的应用[J].数字石油和化工,2007(4):7-59.
Gao Kun,Zhang Shuji,Jin Xiaoming.Application of advanced control technology in light ash calcination process of soda plant[J].Digital Petroleum and Chemical Industry,2007(4):7-59.
[6]王楚.纯碱生产工艺与设备计算[M].北京:化学工业出版社,2005.
[7]Rawlings J B,Stewart B T.Coordinating multiple optimization-based controllers:new opportunities and challenges[J].J Process Control,2008,18:839-845.
[8]Scattolini R.Architectures for distributed and hierarchical model predictive control—a review[J].J Process Control,2009,19:723-731.
[9]童一飞,金晓明.基于广义预测控制的循环流化床锅炉燃烧过程多目标优化控制策略[J].中国电机工程学报,2010,30(11):38-43.
Tong Yifei,Jin Xiaoming.Optimal control of multi-objective in circulating fluidized bed boiler combustion process based on generalized predictive control method[J].Proceedings of the CSEE.2010,30(11):38-43.
[10]金晓明,张泉灵,苏宏业.先进控制技术在纯碱生产碳化过程中的应用[J].化工学报,2008,59(7):1761-1767.
Jin Xiaoming,Zhang Quanling,Su Hongye.Application of advanced process control to carbonation columns in manufacture of soda[J].Journal of Chemical Industry and Engineering,2008,59(7):1761-1767.
[11]张振新.纯碱生产碳化工艺过程建模与优化控制[J].纯碱工业,2011(4):8-10.
Zhang Zhenxin.Modeling and optimum control of carbonation process in manufacture of soda[J].Soda Industry,2011(4):8-10.
[12]柴天佑,丁进良,王宏,等.复杂工业过程运行的混合智能优化控制方法[J].自动化学报,2008,34(5):505-515.
Chai Tianyou,Ding Jinliang,Wang Hong,et al.Hybrid intelligent optimal method for operation of complex industrial processes[J].Acta Automatica Sinica,2008,34(5):505-515.
[13]吴敏,廖环宇,曹卫华,等.烧结过程智能优化控制方法及应用(上)[J].冶金自动化,2010,34(2):6-9.
Wu Min,Liao Huanyu,Cao Weihua,et al.Intelligent optimization and control methods and their application in sintering process[J].Metallurgical Industry Automation,2010,34(2):6-9.
[14]彭晓波,桂卫华,胡志坤,等.铜闪速熔炼过程操作模式的智能优化[J].控制与决策,2008,23(3):297-301.
Peng Xiaobo,Gui Weihua,Hu Zhikun,et al.Operational pattern intelligent optimization for copper flash smelting process[J].Control and Decision,2008,23(3):297-301.

Memo

Memo:
-
Last Update: 2014-02-28