|Table of Contents|

Structural optimization for manipulator with interval uncertainties

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2014年01期
Page:
100-105
Research Field:
Publishing date:

Info

Title:
Structural optimization for manipulator with interval uncertainties
Author(s):
Shi Haijun12Qian Linfang1Xu Yadong1Chen Longmiao1
1.School of Mechanical Engineering,NUST,Nanjing 210094,China; 2.Intelligent Electrical Equipment R&D Centre,Nanjing Nanrui Group Co.Ltd.,Nanjing 211100,China
Keywords:
multi-objective optimization interval uncertainty quantum-inspired evolutionary structural optimization
PACS:
THH122; TP18
DOI:
-
Abstract:
To solve the structural optimization problem of heavy-load manipulator with parameter uncertainties,this paper presents a performance optimization technique based on interval uncertainty analysis and a quantum-inspired evolutionary algorithm.In the proposed approach,the parameter perturbations are mapped from variation space into objective and constraint space,and the sensitivity regions of objective and constraints are estimated.The performance optimization index as an additional constraint of original optimization problem can be determined.Combining the given performance degradation threshold an outer-inner structure is formed.An improved double chains quantum evolutionary algorithm is employed to improve the convergence rate and the results of the conventional evolutionary algorithm.Computer simulation shows both the robustness of the structure in the case of structure parameter perturbation and the purpose of weight reduction can be achieved,providing an approach to solve the complex engineering structural optimization problems with parameter uncertainties effectively.

References:

[1] 郭宇飞,侯保林.基于隐式Lyapunov函数的一类不确定性机械臂位置控制方法[J].南京理工大学学报,2013,37(3):350-355.
Guo Yufei,Hou Baolin.Position control method for uncertainty manipulators based on implicit Lyapunov function[J].Journal of Nanjing University of Science and Techonology,2013,37(3):350-355.
[2]Lin Xiaoxia,Janak S L,Floudas C A.A new robust optimization approach for scheduling under uncertainty:II.Uncertainty with known probability distribution[J].Computers and Chemical Engineering,2007,31:171-195.
[3]Beyer Hans-Georg,Sendhoff B.Robust optimization—A comprehensive survey[J].Computer Methods in Applied Mechanics and Engineering,2007,196:3190-3218.
[4]Kawas B,Laumanns M,Pratsini E.A robust optimization approach to enhancing reliability in production planning under non-compliance risks[J].OR Spectrum,2013:1-31.
[5]Du X X,Huang B Q.Reliability-based design optimization with equality constraints[J].International Journal for Numerical Methods in Engineering,2007,72:1314-1331.
[6]Lee Ikjin,Choi K K,Du Liu,et al.Dimension reduction method for reliability-based robust design optimization[J].Computers and Structures,2008,86:1550-1562.
[7]Huang B Q,Du X P.A robust design method using variable transformation and Gauss-Hermite integration[J].International Journal for Numerical Methods in Engineering,2006,66:1841-1858.
[8]Li Feng,Meng Guangwei,Sha Lirong,et al.Robust optimization design for fatigue life[J].Finite Elements in Analysis and Design,2011,47:1886-1190.
[9]Shin Sangmun,Samanlioglu Funda,Cho Byung Rea,et al.Computing trade-offs in robust design:Perspectives of the mean squared error[J].Computers & Industrial Engineering,2011,60:248-255.
[10]郭惠昕,岳文辉.含间隙平面连杆机构运动精度的稳健优化设计[J].机械工程学报,2012,48(3):75-81.
Guo Huixin,Yue Wenhui.Design optimization of planar linkage mechanism with joint clearance for improving the robustness of kinematic accuracy[J].Journal of Mechanical Engineering,2012,48(3):75-81.
[11]Ben-Tal A,Den Hertog D,De Waegenaere A,et al.Robust solutions of optimization problems affected by uncertain probabilities[J].Management Science,2013,59(2):341-357.
[12]Li Mian,Azarm Shapour,Boyars Art.A new deterministic approach using sensitivity region measures for multi-objective robust and feasibility robust design optimization[J].Transactions of the ASME,2006,128:874-883.
[13]Guo Xu,Bai Wei,Zhang Weisheng,et al.Confidence structural robust design and optimization under stiffness and load uncertainties[J].Computer Methods in Applied Mechanics and Engineering,2009,198:3378-3399.
[14]张曙光.不确定结构分析及优化中的区间模型[J].长春工程学院学报:自然科学版,2009,10(3):1-3.
Zhang Shuguang.Interval model of uncertain structure analysis and optimization[J].Journal of Changchun College of Engineering:Natural Science Edition,2009,10(3):1-3.
[15]董荣梅,孙伟,许焕卫.基于区间分析的非概率稳健优化设计[J].大连理工大学学报,2011,51(1):51-55.
Dong Rongmei,Sun Wei,Xu Huanwei.Non-probabilistic robust optimization design based on interval analysis[J].Journal of Dalian University of Technology,2011,51(1):51-55.
[16]李方义,李光耀,郑刚.基于区间的不确定多目标优化方法研究[J].固体力学学报,2010,31(1):86-92.
Li Fangyi,Li Guangyao,Zheng Gang.Uncertain multi-objective optimization method based on interval[J].Chinese Journal of Solid Mechanics,2010,31(1):86-92.
[17]Li Panchi,Song K P,Shang F H.Double chains quantum genetic algorithm with application to neuro-fuzzy controller design[J].Advances in Engineering Software,2011,42:875-886.

Memo

Memo:
-
Last Update: 2014-02-28