|Table of Contents|

Short-term traffic flow forecasting based on hybrid model

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2014年02期
Page:
246-251
Research Field:
Publishing date:

Info

Title:
Short-term traffic flow forecasting based on hybrid model
Author(s):
Shen Guojiang1Zhu Yun2Qian Xiaojie2Hu Yue2
1.College of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China; 2.State Key Laboratory of Industrial Control Technology,Zhejiang University,Hangzhou 310027,China
Keywords:
interrupted flow short-term traffic flow forecasting Kalman filter model radical basis function neural network inertia factors
PACS:
TP18
DOI:
-
Abstract:
In view of that the traffic flow of the urban road is a nonlinear and uncertaint interrupted flow,a hybrid model for the short-term traffic flow is put forward to overcome the shortage of the lower forecasting accuracy of the single model.This model consists of two sub-models,the Kalman filter model and the radical basis function neural network model,so the steady-state problem of the neural network model in the huge traffic flow and the low accuracy problem of the Kalman filter model in the unsteady traffic flow can be all solved.An inertia factor is introduced in the process of combining to ensure the stability of the hybrid model.The simulation result shows that the hybrid model is feasible and effective.

References:

[1] 李振龙,张利国,钱海峰.短时交通流预测研究综述[J].交通运输工程与信息学报,2008,4(6):34-39.
Li Zhenlong,Zhang Liguo,Qian Haifeng.Summary of short-term traffic flow forecasting research[J].Transportation Engineering and Information Technology,2008,4(6):34-39.
[2]美国交通研究委员会.道路通行能力手册(专题报告209号)[M].任福田,刘小明,荣建,译.北京:人民交通出版社,2007.
[3]杨晓芳.道路交通连续流与间断流整合控制机理及方法[D].上海:同济大学交通运输工程学院,2006.
[4]高慧,赵建玉,贾磊.短时交通流预测方法综述[J].济南大学学报(自然科学版),2008,22(1):88-94.
Gao Hui,Zhao JianYu,Jialei.Summary of short-term traffic flow forecasting methods[J].Journal of University of Jinan(Science and Technology Edition),2008,22(1):88-94.
[5]孙立光,李瑞敏,董屾,等.短时交通流组合预测模型研究[J].武汉理工大学学报(交通科学与工程版),2010,34(5):874-876,881.
Sun Liguang,Li Ruimin,Dong Shen,et al.Study on short-term traffic flow combined forecast model[J].Journal of Wuhan University of Technology(Transportation Science and Engineering Edition),2010,34(5):874-876,881.
[6]顾晨阳,罗熹,程文龙.变权重组合预测模型在短时交通流预测中的应用[J].统计与决策,2010(6):168-169.
Gu Chenyang,Luo Xi,Cheng Wenlong.Hybrid forecasting model with variable weight and its application in short-term traffic flow prediction[J].Statistics and Decision,2010(6):168-169.
[7]聂佩林,余志,何兆成.基于约束卡尔曼滤波的短时交通流量组合预测模型[J].交通运输工程学报,2008,8(5):86-90.
Nie Peilin,Yu Zhi,He Zhaocheng.Constrained Kalman filter combined predictor for short-term traffic flow[J].Journal of Traffic and Transportation Engineering,2008,8(5):86-90.
[8]王均,关伟.基于Kalman滤波的城市环路交通流短时预测研究[J].交通与计算机,2006,24(5):16-19.
Wang Jun,Guan Wei.Short-term traffic forecasting of city ring road based on Kalman filter[J].Computer and Communications,2006,24(5):16-19.
[9]沈国江,王啸虎,孔祥杰.短时交通流量智能组合预测模型及应用[J].系统工程理论与实践,2011,31(3):561-568.
Shen Guojiang,Wang Xiaohu,Kong Xiangjie.Short-term traffic volume intelligent hybrid forecasting model and its application[J].Systems Engineering-theory and Practice,2011,31(3):561-568.
[10]He San,Zou Yongli,Quan Desheng,et al.Application of RBF neural network and ANFIS on the prediction of corrosion rate of pipeline steel in soil[J].Computer Science and Information Engineering,2012(124):639-644.

Memo

Memo:
-
Last Update: 2014-04-30