|Table of Contents|

Improved compressed sensing reconstruction algorithm and its application in image fusion

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2014年02期
Page:
259-263
Research Field:
Publishing date:

Info

Title:
Improved compressed sensing reconstruction algorithm and its application in image fusion
Author(s):
Li HuihuiZeng YanYang NingYao XiwenQian Linhong
Institute of Automation,Northwestern Polytechnical University,Xi'an 710129,China
Keywords:
compressed sensing pseudo-inverse adaptive matching pursuit algorithm greedy algorithm image fusion
PACS:
TN911.73
DOI:
-
Abstract:
In order to reconstruct images more accurate in compressed sensing,the pseudo-inverse adaptive matching pursuit(PIAMP)reconstruction algorithm is put forward based on the existing greed algorithms.The algorithm modifies the existing algorithm from the selection method and support set updating process of the optimal atom.The algorithm is applied in the image fusion of the compressed sensing.The experimental results show that,the reconstruction effect resulting from PIAMP is better than that of other basic greed algorithms,and a good fusion result can be obtained in shorter time.

References:

[1] Candes E J,Wakin M B.An introduction to compressive sampling[J].IEEE Signal Processing Magazine,2008,25(2):21-30.
[2]Li Xin,Qin Shiyin.Efficient fusion for infrared and visible images based on compressive sensing principle[J].IET Image Processing,2011,5(2):141-147.
[3]Tao Wan,Canagarajah N,Achim A.Compressive image fusion[A].Preceedings of IEEE Conference on Image Processing[C].San Diego,CA:IEEE,2008:1308-1311.
[4]贺亚鹏,朱晓华,庄珊娜,等.压缩感知雷达波形优化设计[J].南京理工大学学报,2011,35(4):519-524.
He Yapeng,Zhu Xiaohua,Zhuang Shanna,et al.Optimal waveform design for compressive sensing radar[J].Journal of Nanjing University of Science and Technology,2011,35(4):519-524.
[5]Tropp J A,Gilbea A C.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Transactions on Information Theory,2007,53(12):4655-4666.
[6]Needell D,Vershynin R.Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit[J].Foundations of Computational Mathematics,2009,9(3):317-334.
[7]Needell D,Tropp J A.CoSaMP:Iterative signal recovery from incomplete and inaccurate samples[J].Applied and Computational Harmonic Analysis,2008,26(3):301-321.
[8]Do T T,Gan L,Nguyen N,et al.Sparsity adaptive matching pursuit algorithm for practical compressed sensing[A].Proceedings of the 42th Asilomar Conference on Signals,Systems,and Computers[C].Pacific Grove,US:IEEE Signals Processing Society,2008:581-587.
[9]刘亚新,赵瑞珍,胡绍海,等.用于压缩感知信号重建的正则化自适应匹配追踪算法[J].电子与信息学报,2010,32(11):2713-2717.
Liu Yaxin,Zhao Ruizhen,Hu Shaohai,et al.Regularized adaptive matching pursuit algorithm for signal reconstruction based on compressive sensing[J].Journal of Electronics and Information Technology,2010,32(11):2713-2717.
[10]Lu Gan.Block compressed sensing of natural images[A].Proceedings of the International Conference on Digital Signal Processing[C].Cardiff,UK:Digital Signal Processing,2007:403-406.
[11]Candès E J.La propriété d'isométrie restreinte et ses conséquences pour le compressed sensing[J].Compte Rendus Mathematique,2008,346(9-10):589-592.
[12]雷洋.压缩感知OMP重构算法稀疏字典中匹配原子的选择方法[D].广州:华南理工大学电子与信息学院,2011.
[13]高睿,赵瑞珍,胡绍海.基于压缩感知的变步长自适应匹配追踪重建算法[J].光学学报,2010,30(6):1639-1644.
Gao Rui,Zhao Ruizhen,Hu Shaohai.Variable step size adaptive matching pursuit algorithm for image reconstruction based on compressive sensing[J].Acta Optica Sinica,2010,30(6):1639-1644.

Memo

Memo:
-
Last Update: 2014-04-30