|Table of Contents|

Eccentric discharge of large diameter squat silos based on threedimensional discrete element method

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2014年03期
Page:
414-
Research Field:
Publishing date:

Info

Title:
Eccentric discharge of large diameter squat silos based on threedimensional discrete element method
Author(s):
Sun Weiwei1Zhang Yuan1Meng Shaoping2Qin Xiao1
1.School of Sciences,NUST,Nanjing 210094,China; 2.The Key Lab on RC/PC Structures of Ministry of Education,Southeast University,Nanjing 210096,China
Keywords:
threedimensional discrete element methodlarge diameter squat siloseccentric dischargewallsspherical particlesgranular materialwall elementsparticle velocity fieldsstatic lateral pressuredynamic lateral pressure
PACS:
TU375
DOI:
-
Abstract:
In order to study the dynamic action mechanism of granular materials to the walls of large diameter squat silos,the whole eccentric discharge processes of a silo are simulated by the threedimensional discrete element method(DEM).Spherical particles of different sizes are used to simulate granular material,and wall elements are used to simulate the silo wall.The particle velocity fields and flow processes of particles show that a funnel shaped discharge channel extends upward from the silo outlet,which is validated by simulation tests.The static lateral pressure to the silo wall decreases continuously during the discharge processes.The peak value of dynamic lateral pressure to the silo wall occurs in the initial stage of the discharge process,and the overpressure of the upper wall is more serious than that of the lower wall.The overpressure phenomena often occur in the side near the silo outlet,and the maximum overpressure coefficient is 1.63.The dynamic action of the wall far away from the outlet may be neglected in the eccentric discharge processes.

References:

[1]Dogangun A,Karaca Z,Durmus A,et al.Cause of damage and failures in silo structures[J].Journal of Performance of Constructed Facilities,2009,23(2):65-71.
[2]EN 1991-4-2006.Eurocode 1:Actions on tructures—part 4:Silos and tanks[S].
[3]AS3774-1996.Loads on bulk solids containers[S].
[4]张翀,舒赣平.落地式钢筒仓卸料的模型试验研究[J].东南大学学报(自然科学版),2009,39(3):531-535.
Zhang Chong,Shu Ganping.Experimental research of groundsupported steel silo model’s discharge[J].Journal of Southeast University(Natural Science Edition),2009,39(3):531-535.
[5]赵军宝.仓壁柱承钢筒仓结构的试验研究[D].杭州:浙江大学建筑工程学院,2007.
[6]Fu Jianbao,Luan Maotian,Yang Qing,et al.Threedimensional finite element analysis of wall pressure on large diameter silos[J].Journal of Convergence Information Technology,2010,5(7):120-128.
[7]Li Yanjie,Xu Yong,Jiang Shengyao.DEM simulations and experiments of pebble flow with monosized spheres[J].Powder Technology,2009,193(3):312-318.
[8]Donze F V,Richefeu V,Magnier S A.Advances in discrete element method applied to soil,rock and concrete mechanics,in:State of the art of geotechnical engineering[J].Electronic Journal of Geotechnical Engineering,2009,8:1-44.
[9]杨洋.水泥熟料多点卸料的离散元法模拟[D].上海:同济大学航空航天与力学学院,2007.
[10]戚晓利,尹晓春,王文,等.多次弹塑性撞击实验系统的设计与数值仿真[J].南京理工大学学报,2012,36(2):202-206.
Qi Xiaoli,Yin Xiaochun,Wang Wen,et al.Design and numerical simulation of experimental system for multiple elasticplastic impacts[J].Journal of Nanjing University of Science and Technology,2012,36(2):202-206.
[11]张磊.曲线挡墙散粒体主动侧压力分析及筒仓实践[D].长沙:中南大学土木工程学院,2009.
[12]GB50077-2003.钢筋混凝土筒仓设计规范[S].

Memo

Memo:
-
Last Update: 2014-06-30