|Table of Contents|

Resolution and analysis of overlapping Raman signals based on particle swarm optimization algorithm

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2014年04期
Page:
501-505
Research Field:
Publishing date:

Info

Title:
Resolution and analysis of overlapping Raman signals based on particle swarm optimization algorithm
Author(s):
Zhang Li1Lu Jingui1Cao Lingyan2Yu Zhengwei2Cheng Mingxiao2
1.School of Mechanical and Power Engineering; 2.School of Automation and Electrical Engineering, Nanjing University of Technology,Nanjing 210009,China
Keywords:
Raman signals Raman spectrum overlapping spectrum peak particle swarm optimization algorithm multi-components aromatics isomers on-line measurement quantitative analysis
PACS:
TE622.1
DOI:
-
Abstract:
In the application of the Raman spectroscopy technology,the status of the spectrum peaks overlapping is inevitable.In order to resolve and analyze the overlapping Raman signals speedily and quantificationally,the particle swarm optimization(PSO)algorithm is applied to Raman signal analysis.In this paper,the three ingredients Raman signals resolved aromatics isomers which comprise three ingredients(methylbenzene,1,2-dimethylbenzene,1,3-dimethylbenzene),four ingredients(methylbenzene,1,2-dimethylbenzene,1,3-dimethylbenzene,ethyl benzene)and two ingredients(methylbenzene,1,3-dimethylbenzene)respectively.The experimental results show that the analysis precision is up to many methods and the errors are less than 1%,even to 0.5%.The computing time is less than the methods in the literatures.The results show that the PSO can separate the overlapping Raman spectrum peak of all kinds of ingredients,and can analyze quickly each ingredient of the mixture efficaciously.The PSO is one of the effective methods for analyzing overlapping Raman signals in analytical process.

References:

[1] 程光煦.拉曼布里渊散射[M].北京:科学出版社,2008.
[2]田高友.拉曼光谱技术在石油化工领域应用进展[J].现代科学仪器,2009(4):131-132.
Tian Gaoyou.The progress of the technology of Raman applying in oil chemical engineering[J].Modern Science Instrument,2009(4):131-132.
[3]Marteau P,Zanier N.An application of Raman spec-troscopy in the petroleum industry[J].Spectroscopy,1995,10(7):26-29.
[4]吴国桢.拉曼谱学:峰强中的信息[M].北京:科学出版社,2007.
[5]李卫华,吕国伟,黄兰,等.阿司匹林合成过程的在线拉曼光谱研究[J].物理化学学报,2003,19(2):105-109.
Li Weihua,Lv Guowei,Huang Lan,et al.Aspirin synthesis on-line measurement by Raman spectroscopy[J].Acta Physico-Chimica Sinica,2003,19(2):105-109.
[6]陈晓红,张卫红,张倩芝,等.傅里叶变换红外光谱与拉曼光谱分析碳青霉烯药物亚胺培南的结构特征[J].光散射学报,2006,18(1):26-29.
Chen Xiaohong,Zhang Weihong,Zhang Qianzhi,et al.FTIR and Raman spectroscopic analysis on carbapenems antibiotics imipenem[J].The Journal of Light Scatter,2006,18(1):26-29.
[7]张雁,尹利辉,冯芳.拉曼光谱分析法的应用介绍[J].药物分析杂志,2009,29(7):1236-1241.
Zhang Yan,Yin Lihui,Feng Fang.Introduction for the application of Raman scattering method[J].Chinese Journal of Pharmaceutical Analysis,2009,29(7):1236-1241.
[8]Graft M,Nagli L.UV gated Raman spectroscopy for standoff detection of explosives[J].Optical Materials,2008,11(30):1739-1749.
[9]吴正洁,黄耀熊,王成,等.对强荧光背景拉曼光谱定量分析的研究[J].光谱学与光谱分析,2010,30(7):1798-1801.
Wu Zhengjie,Huang Yaoxiong,Wang Cheng,et al.Raman spectra quantitative analysis on materials with strong fluorescence background[J].Spectroscopy and Spectral Analysis,2010,30(7):1798-1801.
[10]李江,王晖,丁妍,等.免疫算法在重叠拉曼谱峰中的应用[J].化工自动化与仪表,2013,40(1):26-29.
Li Jiang,Wang Hui,Ding Yan,et al.Application of immune algorithm in overlapping Raman spectrum peak[J].Control and Instruments in Chemical Industry,2013,40(1):26-29.
[11]曹玲燕,程明霄,於拯威,等.基于自适应免疫算法重叠拉曼谱峰的解析[J].光谱学与光谱分析,2012,32(05):1262-1265.
Cao Lingyan,Cheng Mingxiao,Yu Zhengwei,et al.Resolution of overlapping Raman signals based on an adaptive immune algorithm[J].Spectroscopy and Spectral Analysis,2012,32(05):1262-1265.
[12]Eberhart R,Kennedy J.A new optimizer using particle swarm theory[A].Proceedings of the Sixth International Symposium on Micro Machine and Human Science[C].Nagoya,Japan:IEEE,1995:39-43.
[13]Zhang L,Lu J,Zhang J,et al.Particles swarm optimization algorithm for radio frequency identification network topology optimization[J].Int J Comput Sci Eng,2011,6(1-2):16-23.
[14]肖迪,葛启承,林锦国,等.一种双种群遗传粒子群算法及在SMB优化中的应用[J].南京理工大学报,2012,36(1):31-36.
Xiao Di,Ge Qicheng,Lin Jinguo,et al.Double populations genetic and particle swarm algorithm and its application in SMB optimization[J].Journal of Nanjing University of Science and Technology,2012,36(1):31-36.
[15]施展,陈庆伟.基于改进的多目标量子行为粒子群优化算法的多无人机协同任务分配[J].南京理工大学学报,2012,36(6):49-55.
Shi Zhan,Chen Qingwei.Cooperative task allocation for multiple UAVS based on improved multi objective quantum behaved particle swarm optimization algorithm[J].Journal of Nanjing University of Science and Technology,2012,36(6):49-55.
[16]倪永年.化学计量学在分析化学中的应用[M].北京:科学出版社,2004.
[17]甘露,罗立强,吴晓军.因子分析在X射线荧光光谱重叠谱峰识别中的应用[J].光谱学与光谱分析,2000,20(1):91-94.
Gan Lu,Luo Liqiang,Wu Xiaojun.Application of factor analysis to identification of overlapped spectrum in XRF[J].Spectroscopy and Spectral Analysis,2000,20(1):91-94.
[18]林锦国.在线拉曼光谱仪的研制及其在吸附分离装置优化中的应用[Z].国家“863”高技术研究发展计划项目,2009.

Memo

Memo:
-
Last Update: 2014-08-31