|Table of Contents|

RFAT customer segmentation based on improved K-means algorithm

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2014年04期
Page:
531-536
Research Field:
Publishing date:

Info

Title:
RFAT customer segmentation based on improved K-means algorithm
Author(s):
Liu Zhiyi1Chen Gong2
1.Department of Computer Science and Information Engineering; 2.Department of Electronic Information and Electrical Engineering,Changzhou Institute of Technology,Changzhou,213002,China
Keywords:
customer classification recency frequency average monetary trentd K-means algorithm initial clustering centers number of clusters
PACS:
TP39
DOI:
-
Abstract:
The traditional K-means algorithm has sensitivity to the initial cluster centers,meanwhile it is difficult for users to determine the optimal number of clusters in advance.In order to solve these problems,a new improved K-means algorithm is proposed here.The algorithm can optimize the initial center points through computing the maximum distance of objects.At the same time,it can find the optimal number of clusters by using a new evaluation function.The results can reduce the dependence on the parameters.When the improved algorithm is used to analyze customers of a firm,the RFAT customer classification model is proposed.The new model has four segmentation variables to assess the customer's value:Recency,Frequency,Average Monetary and Trend.The customers RFAT-value is analyzed by using clustering.The business strategy for different customer groups is also pointed out.The application results show that the RFAT model and the improved K-means algorithm proposed here can classify customers effectively.It also can fully reflect the customer's current value and appreciation potential.

References:

[1] 徐翔斌,王佳强,涂欢,等.基于改进RFM模型的电子商务客户细分[J].计算机应用,2012,32(5):1439-1442.
Xu Xiangbin,Wang Jiaqiang,Tu Huan,et al.Customer classification of E-commerce based on improved RFM model[J].Journal of Computer Applications,2012,32(5):1439-1442.
[2]王克富.基于数据挖掘技术的AFH客户分类应用研究[J].技术经济与管理研究,2012(11):24-28.
Wang Kefu.Applied research on AFH customer classification based on data mining technology[J].Technoeconomics & Management Research,2012(11):24-28.
[3]王飞,钱玉文,王执铨.基于无监督聚类算法的入侵检测[J].南京理工大学学报,2009,33(3):288-292.
Wang Fei,Qian Yuwen,Wang Zhiquan.Intrusion detection based on unsupervised clustering algorithm[J].Journal of Nanjing University of Science and Technology,2009,33(3):288-292.
[4]杨青,孙佰聪,朱美臣,等.基于小波包熵和聚类分析的滚动轴承故障诊断方法[J].南京理工大学学报,2013,37(4):517-523.
Yang Qing,Sun Baicong,Zhu Meichen.Rolling bearing fault diagnosis method based on wavelet packet entropy and clustering analysis[J].Journal of Nanjing University of Science and Technology,2013,37(4):517-523.
[5]刘朝华,梅强,蔡淑琴.基于RFM的客户分类及价值评价模型[J].技术经济与管理研究,2012(5):33-36.
Liu Chaohua,Mei Qiang,Cai Shuqin.The model of customer classification and evaluation of customer value based on RFM[J].Technoeconomics & Management Research,2012(5):33-36.
[6]史忠植.知识发现[M].北京:清华大学出版社,2004.
[7]朱云贺,张春海,张博.基于数据分段的K-means算法的优化研究[J].计算机技术与发展,2010,20(11):130-132.
Zhu Yunhe,Zhang Chunhai,Zhang Bo.Optimizing research on K-means based on data partition[J].Computer Technology and Development,2010,20(11):130-132.
[8]张斌,魏振钢,范韬,等.基于距离估计优化初始聚类中心的K-Means算法[J].计算机科学,2011,38(7):44-46.
Zhang Bin,Wei Zhengang,Fan Tao,et al.Distance evaluation based approach for K-means clustering algorithm[J].Computer Science,2011,38(7):44-46.
[9]冯波,郝文宁,陈刚,等.K-means算法初始聚类中心选择的优化[J].计算机工程与应用,2013,49(14):182-185.
Feng Bo,Hao Wenning,Chen Gang,et al.Optimization to K-means initial cluster centers[J].Computer Engineering and Applications,2013,49(14):182-185.
[10]杨善林,李永森,胡笑旋,等.K-means算法中的K值优化问题研究[J].系统工程理论与实践,2006,26(2):97-101.
Yang Shanlin,Li Yongsen,Hu Xiaoxuan,et al.Optimization study on K Value of K-means algorithm[J].Systems Engineering—Theory & Practice,2006,26(2):97-101.
[11]朱艳丽.基于消费行为的客户细分模型应用研究[D].成都:四川师范大学计算机科学学院,2007.
[12]帅斌,邓绍蔚,黄丽霞.基于改进RFM模型的铁路快捷货运客户市场细分方法[J].铁道科学与工程学报,2014,11(1):112-117.
Shuai Bin,Den Shaowei,Huang Lixia.Railway express freight consumer market segmentation based on improved RFM model[J].Journal of Railway Science and Engineering,2014,11(1):112-117.

Memo

Memo:
-
Last Update: 2014-08-31