|Table of Contents|

Solving robot inverse kinematics based on differential evolution and particle swarm optimization BP neural network

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2014年06期
Page:
763-
Research Field:
Publishing date:

Info

Title:
Solving robot inverse kinematics based on differential evolution and particle swarm optimization BP neural network
Author(s):
Chen Gui1Chen Yaozhong2Lin Jian1Wen Xiulan1
1.School of Automation,Nanjing Institute of Technology,Nanjing 211167,China; 2.China North Industries Group Corporation,Nanjing 211153,China
Keywords:
differential evolution particle swarm optimization back propagation neural network robots inverse kinematics convergence speed weights thresholds joint angle error position error
PACS:
TP242
DOI:
-
Abstract:
Aiming at the problem of slow convergence speed of traditional back propagation(BP)neural network algorithms,differential evolution(DE)and particle swarm optimization(PSO)are combined to optimize BP neural network for robot inverse kinematics.An objective function of the optimization algorithm is formulated based on the mapping of robot forward kinematics.DE operation is employed to optimize particle evolution direction in PSO,and the weights and thresholds of the BP neural network are optimized.A simulation experiment is proposed for a KUKA robot,and the result shows that:the solution accuracy of robot inverse kinematics of the algorithm proposed here is high,and the joint angle error is below 0.1°; the position error between the initial pose matrix of the robot and that solved by the algorithm proposed here is of the order of magnitude of 0.1 mm,and has good generalization ability.The algorithm proposed here satisfies the accuracy requirements of robot locations and postures.

References:

[1] 蔡自兴.机器人学[M].2版.北京:清华大学出版社,2009.
[2]Niku S B.机器人学导论——分析、系统及应用[M].孙富春,朱纪洪,刘国栋,等译.北京:电子工业出版社,2004.
[3]Olaru A,Olaru S.Optimization of the robots inverse kinematics results by using the neural network and LabVIEW simulation[A].2011 International Conference on Future Information Technology[C].Singapore:IACSIT Press,2011:40-45.
[4]吴振宇,姚明江,冯林,等.基于遗传粒子群的PUMA机器人逆运动求解[J].计算机仿真,2011,28(10):173-176. Wu Zhenyu,Yao Mingjiang,Feng Lin,et al.Solving PUMA robot inverse kinematics based on genetic particle swarm optimization[J].Computer Simulation,2011,28(10):173-176.
[5]芮挺,朱经纬,蒋新胜,等.PUMA机器人逆运动模拟退火粒子群求解方法[J].计算机工程与应用,2010,46(3):27-29. Rui Ting,Zhu Jingwei,Jiang Xinsheng,et al.Solving PUMA robot inverse kinematics based on simulated annealing particle swarm optimization[J].Computer Engineering and Applications,2010,46(3):27-29.
[6]钱学毅,迟建华,吴双.微分进化多目标优化算法研究[J].机械传动,2013,37(6):22-25. Qian Xueyi,Chi Jianhua,Wu Shuang.Research on differential evolution multi-objective optimization algorithm[J].Journal of Mechanical Transmission,2013,37(6):22-25.
[7]门志国,彭秀艳,王兴梅,等.基于GA优化BP神经网络辨识的Volterra级数核估计算法[J].南京理工大学学报,2012,36(6):962-967. Men Zhiguo,Peng Xiuyan,Wang Xingmei,et al.Volterra series kernels estimation algorithm based on GA optimized BP neural network identification[J].Journal of Nanjing University of Science and Technology,2012,36(6):962-967.
[8]周炜,廖文和,田威,等.基于粒子群优化神经网络的机器人精度补偿方法研究[J].中国机械工程,2013,24(2):174-179. Zhou Wui,Liao Wenhe,Tian Wei,et al.Method of industrial robot accuracy compensation based on particle swarm optimization neural network[J].China Mechanical Engineering,2013,24(2):174-179.
[9]陈志敏,薄煜明,吴盘龙,等.收敛粒子群全区域自适应粒子滤波算法及其应用[J].南京理工大学学报,2012,36(5):861-868. Chen Zhimin,Bo Yuming,Wu Panlong,et al.Novel landscape adaptive particle filter algorithm based on convergent particle swarm and its application[J].Journal of Nanjing University of Science and Technology,2012,36(5):861-868.
[10]张玲,王玲,吴桐.基于改进的粒子群算法优化反向传播神经网络的热舒适度预测模型[J].计算机应用,2014,34(3):775-779. Zhang Ling,Wang Ling,Wu Tong.Thermal comfort prediction model based on improved particle swarm optimization-back propagation neural network[J].Journal of Computer Applications,2014,34(3):775-779.
[11]岳海波,张树栋,史志茹,等.基于自适应差分进化和BP网络的罗盘误差补偿[J].宇航学报,2013,34(12):1628-1633. Yue Haibo,Zhang Shudong,Shi Zhiru,et al.Compass error compensation based on adaptive differential evolution and BP network[J].Journal of Astronautics,2013,34(12):1628-1633.
[12]Xin Bin,Chen Jie,Peng Zhihong,et al.An adaptive hybrid optimizer based on particle swarm and differential evolution for global optimization[J].Science China Information Sciences,2010,53(5):980-989.
[13]Kim P,Lee J.An integrated method of particle swarm optimization and differential evolution[J].Journal of Mechanical Science and Technology,2009,23(2):426-434.
[14]Hao Zhifeng,Guo Guanghan,Huang Han.A particle swarm optimization algorithm with differential evolution[A].2007 International Conference on Machine Learning and Cybernetics[C].Hong Kong,China:IEEE,2007:1031-1035.
[15]栾丽君,谭立静,牛奔.一种基于粒子群优化算法和差分进化算法的新型混合全局优化算法[J].信息与控制,2007,36(6):708-714. Luan Lijun,Tan Lijing,Niu Ben.A novel hybrid global optimization algorithm based on particle swarm optimization and differential evolution[J].Information and Control,2007,36(6):708-714.

Memo

Memo:
-
Last Update: 2014-12-31