[1] 蔡自兴.机器人学[M].2版.北京:清华大学出版社,2009. [2]Niku S B.机器人学导论——分析、系统及应用[M].孙富春,朱纪洪,刘国栋,等译.北京:电子工业出版社,2004. [3]Olaru A,Olaru S.Optimization of the robots inverse kinematics results by using the neural network and LabVIEW simulation[A].2011 International Conference on Future Information Technology[C].Singapore:IACSIT Press,2011:40-45. [4]吴振宇,姚明江,冯林,等.基于遗传粒子群的PUMA机器人逆运动求解[J].计算机仿真,2011,28(10):173-176. Wu Zhenyu,Yao Mingjiang,Feng Lin,et al.Solving PUMA robot inverse kinematics based on genetic particle swarm optimization[J].Computer Simulation,2011,28(10):173-176. [5]芮挺,朱经纬,蒋新胜,等.PUMA机器人逆运动模拟退火粒子群求解方法[J].计算机工程与应用,2010,46(3):27-29. Rui Ting,Zhu Jingwei,Jiang Xinsheng,et al.Solving PUMA robot inverse kinematics based on simulated annealing particle swarm optimization[J].Computer Engineering and Applications,2010,46(3):27-29. [6]钱学毅,迟建华,吴双.微分进化多目标优化算法研究[J].机械传动,2013,37(6):22-25. Qian Xueyi,Chi Jianhua,Wu Shuang.Research on differential evolution multi-objective optimization algorithm[J].Journal of Mechanical Transmission,2013,37(6):22-25. [7]门志国,彭秀艳,王兴梅,等.基于GA优化BP神经网络辨识的Volterra级数核估计算法[J].南京理工大学学报,2012,36(6):962-967. Men Zhiguo,Peng Xiuyan,Wang Xingmei,et al.Volterra series kernels estimation algorithm based on GA optimized BP neural network identification[J].Journal of Nanjing University of Science and Technology,2012,36(6):962-967. [8]周炜,廖文和,田威,等.基于粒子群优化神经网络的机器人精度补偿方法研究[J].中国机械工程,2013,24(2):174-179. Zhou Wui,Liao Wenhe,Tian Wei,et al.Method of industrial robot accuracy compensation based on particle swarm optimization neural network[J].China Mechanical Engineering,2013,24(2):174-179. [9]陈志敏,薄煜明,吴盘龙,等.收敛粒子群全区域自适应粒子滤波算法及其应用[J].南京理工大学学报,2012,36(5):861-868. Chen Zhimin,Bo Yuming,Wu Panlong,et al.Novel landscape adaptive particle filter algorithm based on convergent particle swarm and its application[J].Journal of Nanjing University of Science and Technology,2012,36(5):861-868. [10]张玲,王玲,吴桐.基于改进的粒子群算法优化反向传播神经网络的热舒适度预测模型[J].计算机应用,2014,34(3):775-779. Zhang Ling,Wang Ling,Wu Tong.Thermal comfort prediction model based on improved particle swarm optimization-back propagation neural network[J].Journal of Computer Applications,2014,34(3):775-779. [11]岳海波,张树栋,史志茹,等.基于自适应差分进化和BP网络的罗盘误差补偿[J].宇航学报,2013,34(12):1628-1633. Yue Haibo,Zhang Shudong,Shi Zhiru,et al.Compass error compensation based on adaptive differential evolution and BP network[J].Journal of Astronautics,2013,34(12):1628-1633. [12]Xin Bin,Chen Jie,Peng Zhihong,et al.An adaptive hybrid optimizer based on particle swarm and differential evolution for global optimization[J].Science China Information Sciences,2010,53(5):980-989. [13]Kim P,Lee J.An integrated method of particle swarm optimization and differential evolution[J].Journal of Mechanical Science and Technology,2009,23(2):426-434. [14]Hao Zhifeng,Guo Guanghan,Huang Han.A particle swarm optimization algorithm with differential evolution[A].2007 International Conference on Machine Learning and Cybernetics[C].Hong Kong,China:IEEE,2007:1031-1035. [15]栾丽君,谭立静,牛奔.一种基于粒子群优化算法和差分进化算法的新型混合全局优化算法[J].信息与控制,2007,36(6):708-714. Luan Lijun,Tan Lijing,Niu Ben.A novel hybrid global optimization algorithm based on particle swarm optimization and differential evolution[J].Information and Control,2007,36(6):708-714.