|Table of Contents|

Influences of device for flame joint and flow stabilization on performance of trapped vortex combustor

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2014年06期
Page:
787-
Research Field:
Publishing date:

Info

Title:
Influences of device for flame joint and flow stabilization on performance of trapped vortex combustor
Author(s):
Li Xin12Lu Yang1Wang Yinzhu1Xiao Zhoufang1Zou Jianfeng1
1.School of Aeronautics and Astronautics,Zhejiang University,Hangzhou 310027,China; 2.Aeronautical Military Representative Office of Navy in Changzhou,Changzhou 213022,China
Keywords:
device for flame joint and flow stabilization trapped vortex combustors combustion performance high end digital prototyping system cold flow field structure total pressure loss combustion efficiency outlet temperature
PACS:
V231.2
DOI:
-
Abstract:
In order to analyze the influences of a device for flame joint and flow stabilization on the flow field and performance of a trapped vortex combustor,a high end digital prototyping system is used for design and numerical calculation.A device for flame joint and flow stabilization is added on a typical three-dimensional trapped vortex combustor model.The cold flow field structure and total pressure loss regarding the two models are carried out in conditions of different inlet Mach numbers.Under the working condition of which the Mach number is 0.2,the combustion flow field of the two models are taken for analysis and comparison,and the influences of the device for flame joint and flow stabilization on the chamber performance are analyzed.The simulation results show that:the NOx-emission level of the trapped vortex combustor is lower than those of normal chambers; after added the device for flame joint and flow stabilization,the energy transfer between the trapped vortex area and the mainstream area is increased instead of being cut by the excessive mainstream speed; the combustion efficiency is improved from 97% to 99% and the outlet temperature distribution is decreased from 0.92 to 0.49; the total pressure loss of the cold flow field of the two models is increased by 2%-12%.

References:

[1] 武辉.凹腔驻涡燃烧器的实验与数值研究[D].北京:中国科学院研究生院工程热物理研究所,2009.
[2]Hsu K Y,Goss L P,Trump D D.Performance of a trapped-vortex combustor[A].33rd Aerospace Sciences Meeting and Exhibit[C].Reno,USA:AIAA,1995.
[3]Katta V R,Roquemore W M.Numerical studies of trapped-vortex combustor[A].32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit[C].Lake Buena Vista,Florida,USA:AIAA,1996.
[4]樊未军,严明,易琪,等.富油/快速淬熄/贫油驻涡燃烧室低NOx排放[J].推进技术,2006,27(1):88-91. Fan Weijun,Yan Ming,Yi Qi,et al.Low NOx emission of rich-burn,quick-mix,lean-burn trapped vortex combustor[J].Journal of Propulsion Technology,2006,27(1):88-91.
[5]何小民,王家骅.驻涡火焰稳定器冷态流场特性的初步研究[J].航空动力学报,2002,17(5):567-571. He Xiaomin,Wang Jiahua.An investigation on the fluid characteristics of trapped-vortex combustor[J].Journal of Aerospace Power,2002,17(5):567-571.
[6]何小民,许金生,苏俊卿.驻涡区进口结构参数影响TVC燃烧性能的试验[J].航空动力学报,2007,22(11):1798-1802. He Xiaomin,Xu Jinsheng,Su Junqing.Effect of air and fuel injection patterns in pilot zone on trapped-vortex combustor performance[J].Journal of Aerospace Power,2007,22(11):1798-1802.
[7]刘世青.驻涡燃烧室流动特性的冷态数值研究[D].大连:大连海事大学轮机工程学院,2011.
[8]程平.驻涡燃烧室冷态流场气体喷射的研究[D].大连:大连海事大学轮机工程学院,2009.
[9]Xing Fei,Wang Peiyong,Zhang Shuai,et al.Experiment and simulation study on lean blow-out of trapped vortex combustor with various aspect ratios[J].Aerospace Science and Technology,2012,18(1):48-55.
[10]蒋波.RQL驻涡燃烧室排放性能研究[D].南京:南京航空航天大学能源与动力学院,2010.
[11]Xie Lijun,Zheng Yao,Chen Jianjun,et al.Enabling technologies in the problem solving environment HEDP[J].Communications in Computational Physics,2008,4(5):1170-1193.
[12]段丽.高端数字样机中的几何用户环境——框架设计和软件实现[D].杭州:浙江大学计算机学院,2010.
[13]郑耀,郑建靖,陈建军,等.高端数字样机系统的前处理用户环境[J].计算力学学报,2012,29(1):135-139. Zheng Yao,Zheng Jianjing,Chen Jianjun,et al.Preprocessing environment in a high end digital prototyping system[J].Chinese Journal of Computa-tional Mechanics,2012,29(1):135-139.
[14]翟晓磊,彭日亮,樊未军,等.某驻涡燃烧室性能数值模拟[J].航空动力学报,2013,28(5):1134-1141. Zhai Xiaolei,Peng Riliang,Fan Weijun,et al.Numerical simulation on a certain trapped vortex combustor[J].Journal of Aerospace Power,2013,28(5):1134-1141.
[15]金如山.航空燃气轮机燃烧室[M].北京:宇航出版社,1988.

Memo

Memo:
-
Last Update: 2014-12-31