|Table of Contents|

Network security situational assessment method based on improved D-S evidence theory

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2015年04期
Page:
405-
Research Field:
Publishing date:

Info

Title:
Network security situational assessment method based on improved D-S evidence theory
Author(s):
Tang YongliLi WeijieYu JinxiaYan Xixi
School of Computer Science and Technology,Henan Polytechnic University,Jiaozuo 454000,China
Keywords:
network security situational assessment back propagation neural network D-S evidence theory basic probability assignation situational recognition rate
PACS:
TP393.08
DOI:
-
Abstract:
It is a hot issue for network security situational assessment in the field of information security.In order to solve the problem of over-reliance on expert experience,it proposes a security situational assessment method based on the improved D-S evidence theory.For this method,it fuses multi-source situation information and uses the back propagation(BP)neural network based on Genetic Algorithm to obtain the basic probability assignation(BPA)of the D-S evidence theory.The D-S evidence theory is adopted to integrate the BPA in turn,weaken the interference of artificial factors on BPA,and improve the BPA forecasting accuracy and the situational recognition rate of network security situation.Tests with a real network environment show that this method effectively improves the network security situational assessment.

References:

[1] Bass T.Intrusion systems and multi-sensor data fusion.creating cyberspace situational awareness[J].Communications of the ACM,2000,43(4):99-105.
[2]Holsopple J,Yang S J.FuSIA:Future situation and impact awareness[A].Proceedings of the 11th International Conference on Information Fusion[C].Cologne,Germany:IEEE,2008:1-8.
[3]Holsopple J,Sudit M,Nusinov M,et al.Enhancing situation awareness via automated situation assessment[J].IEEE Communications Magazine,2010,48(3):146-152.
[4]Liu Z,Li S J,He J,et al.Complex network security analysis based on attack graph model[A].2012 Instrumentation,Measurement,Computer,Communication and Control International Conference[C].Harbin,China:IEEE Computer Society,2012:183-186.
[5]Zhang S,Yao S,Ye X,et al.A network security situation analysis framework based on information fusion[A].Proceedings of 6th IEEE Joint International Information Technology and Artificial Intelligence Conference[C].Chongqing,China:IEEE Computer Society,2011:362-332.
[6]龚正虎,卓莹.网络态势感知研究[J].软件学报,2010,21(7):1605-1619.
Gong Zhenghu,Zhuo Ying.Research on cyber space situational awareness[J].Journal of Software,2010,21(7):1605-1619.
[7]韦勇,连一峰,冯登国.基于信息融合的网络安全态势评估模型[J].计算机研究与发展,2009,46(3):353-362.
Wei Yong,Lian Yifeng,Feng Dengguo.A network security situational awareness model based on information fusion[J].Journal of Computer Research and Development,2009,46(3):353-362.
[8]吴迪,连一峰,陈恺,等.一种基于攻击图的安全威胁识别和分析方法[J].计算机学报,2012,35(9):1939-1950.
Wu Di,Lian Yifeng,Chen Kai,et al.A security threats identification and analysis method based on attack graph[J].Chinese Journal of Computers,2012,35(9):1939-1950.
[9]杨雅辉,黄海珍,沈晴霓,等.基于增量式GHSOM神经网络模型的入侵检测研究[J].计算机学报,2014,37(5):1216-1224.
Yang Yahui,Huang Haizhen,Shen Qingni,et al.Research on intrusion detection based on incremental GHSOM[J].Chinese Journal of Computers,2014,37(5):1216-1224.
[10]赵秋月,左万利,田中生,等.一种基于改进D-S证据理论的信任关系强度评估方法研究[J].计算机学报,2014,37(4):874-883.
Zhao Qiuyue,Zuo Wanli,Tian Zhongsheng,et al.A method for assessment of trust relationship strength based on the improved D-S evidence theory[J].Chinese Journal of Computers,2014,37(4):874-883.
[11]陈秀真,郑庆华,管晓宏.层次化网络安全威胁态势量化评估方法[J].软件学报,2006,17(4):885-897.
Chen Xiuzhen,Zheng Qinghua,Guan Xiaohong,et al.Quantitative hierarchical threat evaluation model for network security[J].Journal of Software,2006,17(4):885-897.
[12]阎平凡,张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2005.
Yan Pingfan,Zhang Changshui,et al.Artificial neural networks and simulated evolutionary computation[M].Beijing:Tsinghua University Press,2005.
[13]陈得宝,赵春霞.基于改进GA的WRBF神经网络设计与应用[J].南京理工大学学报,2007,31(3):370-374.
Chen Debao,Zhao Chunxia.Design and application of WRBF neural network based on improved GA[J].Journal of Nanjing University of Science and Technology,2007,31(3):370-374.
[14]谢丽霞,王亚超,于巾博.基于神经网络的网络安全态势感知[J].清华大学学报,2013,53(12):1750-1760.
Xie Lixia,Wang Yachao,Yu Jinbo.Network security situation awareness based on neural networks[J].Journal of Tsinghua University,2013,53(12):1750-1760.

Memo

Memo:
-
Last Update: 2015-08-31