|Table of Contents|

Controller design for linear discrete-time system in delta-domain

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2015年05期
Page:
571-
Research Field:
Publishing date:

Info

Title:
Controller design for linear discrete-time system in delta-domain
Author(s):
Liu YanPan Feng
Key Laboratory of Advanced Process Control for Light Industry(Ministry of Education), Jiangnan University,Wuxi 214122,China
Keywords:
discrete-time control system delta-domain generalized Kalman-Yakubovic-Popov lemma approximate model matching H norm linear matrix inequalities
PACS:
TP273
DOI:
-
Abstract:
In view of that the z-domain discrete-time controller can not satisfy the performance requirements of the linear system with fast-sampling,a new method is presented to design the digital proportion-integration-differentiation(PID)controller for the delta-domain discrete-time system.By using the generalized Kalman-Yakubovic-Popov(GKYP)lemma,the delta-domain is correspondingly divided into certain appropriate areas according to the product scopes of the frequency and sampling period.Based on the principle of approximate model matching,the design of PID controller in the fast-sampling system is converted into solving the optimization problem of H norm with the form of inequality for the restricted areas.Furthermore,the inequalities described in the form of coefficient matrices are transformed to solve the linear matrix inequality(LMI)in the state space realization.Finally,a numerical simulation shows that the proposed method can enhance the robustness to the sample period values,achieve the predictive performance index and guarantee the stability of the system as well as the minimum phase characteristic.

References:

[1] Middleton R H,Goodwin G C.Digital control and estimation:A unified approach[M].Englewood Cliffs,UK:Pretice-Hall,1990. [2]张端金,杨成梧.反馈控制Delta算子理论的研究与发展[J].控制理论与应用,1998,15(2):153-160.
Zhang Duanjin,Yang Chengwu.Delta operator theory for feedback systems:A survey[J].Control Theory and Applications,1998,15(2):153-160. [3]肖民卿.Delta算子系统若干控制问题研究[D].重庆:重庆大学自动化学院,2008. [4]Hara S,Iwasaki T,Shiokata D.Robust PID control using generalized KYP synthesis:Direct open-loop shaping in multiple frequency ranges[J].IEEE Control Systems Magazine,2006,26(1):80-91. [5]Belkharraz A,Sobel K.Simple adaptive control in the delta domain for aircraft control surface failures[J].Collection of Technical Papers-AIAA Guidance,Navigation,and Control Conference,2005,5:3814-3844. [6]Sarkar P,Pal J.A unified approach for model order reduction in delta domain[J].Advances in Modelling and Analysis C,2006,6:43-61. [7]张端金,吴捷,杨成梧.Delta算子系统圆形区域极点配置的鲁棒性[J].控制与决策,2001,16(3):337-340.
Zhang Duanjin,Wu Jie,Yang Chengwu.Robustness of pole as signment in a circular region for delta operator[J].Control and Decision,2001,16(3):337-340. [8]Neumann R.Delta-operator generalized predictive control[J].IEEE Conference Decide Control,1992,35(5):2224-2225. [9]Dong Xinzhuang,Tian Wanhu,Mao Qingtang,et al.Robust admissibility analysis and synthesis of uncertain singular systems via delta operator approach[A].The 10th IEEE International Conference on Control and Automation[C].Hangzhou,China:IEEE,2013:1059-1064. [10]Xiang Zhengrong,Wang Ronghao.Robust H control for a class of uncertain switched systems using Delta operator[J].Transactions of the Institute of Measurement and Control,2010,32(3):331-344. [11]向峥嵘,张端金,陈庆伟,等.不确定模糊Delta算子系统的鲁棒H 控制[J].控制理论与应用,2004,21(2):299-301.
Xiang Zhengrong,Zhang Duanjin,Chen Qingwei,et al.Robust and H-infinity control for a class of fuzzy systems using Delta operator[J].Control Theory & Applications,2004,21(2):299-301. [12]刘满,井元伟,张嗣瀛.Delta算子系统D稳定鲁棒容错控制[J].东北大学学报(自然科学版),2004,25(8):715-718. Liu Man,Jing Yuanwei,Zhang Siying.D-stable robust fault-tolerant control for delta operator systems[J].Journal of Northeastern University(Natural Science),2004,25(8):715-718. [13]Qiu Jiqing,Xia Yuanqing,Yang Hongjiu,et al.Robust stabilization for a class of discrete-time systems with time-varying delays via delta operators[J].IET Control Theory and Applications,2008,2(1):87-93. [14]Soh C B.Robust stability of discrete-time systems using delta operators[J].IEEE Trans on Automatic Control,1991,36(3):377-380. [15]Lennartson B,Middleton R,Christiansson A K,et al.Low order sampled data H control using the delta operator and LMIs[J].Conference on Decision and Control-CDC,2004,4:4479-4484. [16]向峥嵘,陈庆伟,胡伟礼.不确定Delta 算子系统的鲁棒H重构控制[J].控制理论与应用,2003,20(4):641-643. Xiang Zhengrong,Chen Qingwei,Hu Weili.Robust H reconfigurable control of a class of uncertain Delta operator systems with actuator failure[J].Control Theory & Applications,2003,20(4):641-643. [17]Mochizuki S,Ichihara H.Generalized Kalman-Yakubovich-Popov lemma based I-PD controller design for ball and plate system[J].Journal of Applied Mathematics,2013(Special Issue),ID854631-9. [18]Sun Guanghui,Ge Dongming,Wang Shujuan.Induced L2 norm control for LPV system with specified class of disturbance inputs[J].Journal of the Franklin Institute,2013,350(2):331-346. [19]Iwasaki T.(Generalized)KYP lemma and applications[J].Encyclopedia of Systems and Control,2014,DOI:10.1007/978-1-4471-5102-9_160-1. [20]Dehghani A,Lanzon A,Anderson B.A two-degree-of-freedom H control design method for robust model matching[J].Int J of Robust and Nonlinear Control,2006,16(10):467-483. [21]Dehghani A,Lanzon A,Anderson B.An H model referencing design utilizing a two degree of freedom controller scheme[A].The 44th IEEE Conference on Decision and Control and European Control Conference ECC 2005[C].Seville,Spain:IEEE,2005:2302-2307. [22]Iwasaki T,Hara S.Generalization of Kalman-Yakubovic-Popov lemma for restricted frequency inequalities[A].Proc of American Control Conference 2003[C].Denver,US,2003:3828-3833. [23]Li J G,Yuan J Q,Lu J G.Observer-based H model referencing design utilizing a two degree of freedom controller scheme[A].The 44th IEEE Conference on Decision and Control and European Control Conference ECC 2005[C].Seville,Spain:IEEE,2005:2302-2307. [22]Iwasaki T,Hara S.Generalization of Kalman-Yakubovic-Popov lemma for restricted frequency inequalities[A].Proc of American Control Conference 2003[C].Denver,US,2003:3828-3833. [23]Li J G,Yuan J Q,Lu J G.Observer-based b>∞ control for networked nonlinear systems with random packet losses[J].IEEE Transactions on Automatic Control,2010,41(1):39-46. [24]Iwasaki T,Hara S.Generalized KYP lemma:Unified frequency domain inequalities with design applications[J].IEEE Trans Automatic Control,2005,50(1):41-59.

Memo

Memo:
-
Last Update: 2015-10-31