|Table of Contents|

Adaptive robust control for servo system with transmission flexibility

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2015年06期
Page:
650-
Research Field:
Publishing date:

Info

Title:
Adaptive robust control for servo system with transmission flexibility
Author(s):
Cheng Zhenhe1Guo Jian2Ji Jingjing2
1.State Grid Xuzhou Power Supply Company,Xuzhou 221005,China;
2.School of Automation,NUST,Nanjing 210094,China
Keywords:
transmission flexibility servo system adaptive control robust control Newton kinematics adaptive compensation stable feedback
PACS:
TP13
DOI:
-
Abstract:
For servo systems with un-modeled dynamics and external disturbance,a kinetic model is set up according to the Newton kinematics and considering transmission flexibility.An adaptive robust controller based on Backstepping is designed including adaptive compensation,stable feedback and robust control based on model online parameter estimation.The closed-loop signals are proved to be bounded and the tracking error is within the range of any requirement by Lyapunov stability theory.Experiments verify the effectiveness of the proposed algorithm.

References:

[1] Márton L,Lantos B.Control of mechanical systems with Stribeck friction and backlash[J].Systems & Control Letters,2009,58(2):141-147.
[2]Barbosa R S,Machado J.Describing function analysis of systems with impacts and backlash[J].Nonlinear Dynamics,2002,29(1-4):235-250.
[3]唐念华.重型数控机床双电机同步联动伺服系统的设计与研究[D].哈尔滨:哈尔滨理工大学机械动力工程学院,2008.
[4]董富祥,洪嘉振.多体系统动力学碰撞问题研究综述[J].力学进展,2009,39(3):352-359.
Dong Fuxiang,Hong Jiazhen.Review of impact problem for dynamics of multibody system[J].Advances in Mechanics,2009,39(3):352-359.
[5]刘铸永,洪嘉振.柔性多体系统动力学研究现状与展望[J].计算力学学报,2008,25(4):411-416.
Liu Zhuyong,Hong Jiazhen.Research and prospect of flexible multi-body systems dynamics[J].Chinese Journal of Computational Mechanics,2008,25(4):411-416.
[6]任会礼.锚泊起重船刚柔耦合动力学建模及其动态特性研究[D].武汉:华中科技大学机械科学与工程学院,2008.
[7]Sugiyama H,Gerstmayr J,Shabana A A.Deformation modes in the finite element absolute nodal coordinate formulation[J].Journal of Sound and Vibration,2006,298(4-5):1129-1149.
[8]Guo Jian,Yao Bin,Chen Qingwei,et al.High performance adaptive robust control for nonlinear system with unknown input backlash[C].Proceedings of the 48th IEEE Conference on Decision and Control,2009 Held Jointly with the 2009 28th Chinese Control Conference(CDC/CCC 2009)[C].Shanghai:IEEE,2009:7675-7679.
[9]Yao Bin.High performance adaptive robust control of nonlinear systems:A general framework and new schemes[A].Proceedings of the 36th IEEE Conference on Decision and Control[C].San Diego,CA,USA:IEEE,1997:2489-2494.
[10]Goodwin G C,Mayne D Q.A parameter estimation perspective of continuous time model reference adaptive control[J].Automatica,1987,23(1):57-70.
[11]闵颖颖,刘允刚.Barbalat引理及其在系统稳定性分析中的应用[J].山东大学学报(工学版),2007,37(1):51-55,114.
Min Yingying,Liu Yungang.Barbalat lemma and its application in analysis of system stability[J].Journal of Shandong University(Engineering Science),2007,37(1):51-55,114.

Memo

Memo:
-
Last Update: 2015-12-31