|Table of Contents|

Flexural behaviors of prestressed concrete beams after freeze-thaw cycles and chloride penetration

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2015年06期
Page:
744-
Research Field:
Publishing date:

Info

Title:
Flexural behaviors of prestressed concrete beams after freeze-thaw cycles and chloride penetration
Author(s):
Ge WenjieCao DafuXu Rong
College of Civil Science and Engineering,Yangzhou University,Yangzhou 225127,China
Keywords:
freeze-thaw cycles chloride penetration prestressed concrete beams flexural behaviors static flexural experiments dynamic elastic modulus cracking load ultimate load
PACS:
TU375.1
DOI:
-
Abstract:
In order to study the durability of prestressed concrete structures,6 prestressed concrete beams with partial prestressing ratios of 0.35,0.52 and 0.62 are tested by static flexural experiments after experiencing freeze-thaw cycles and chloride penetration for 50 and 75 times.The results show that the concrete dynamic elastic modulus decrease fast with the increase of the freeze-thaw cycle number,and the dynamic elastic modulus of tested specimens with the high partial prestressing ratios decrease less; for components with prestressing ratios of 0.35,0.52 and 0.62,comparing the results after 50 times freeze-thaw cycles with the results after 75 times freeze-thaw cycles,the cracking loads decrease 6.9%,6.7% and 5.7% respectively and the ultimate loads decrease 4.7%,17.5% and 11.6% respectively; after 50 times freeze-thaw cycles,the cracking loads of components with prestressing ratios of 0.52 and 0.62 are higher than those of 0.35 by 20%,17.85% respectively,and the ultimate loads are higher by 21.4%,8.7% respectively; after 75 times freeze-thaw cycles,the cracking loads of components with prestressing ratios of 0.52 and 0.62 are higher than those of 0.35 by 23.8%,19.0% respectively,and the ultimate loads are higher by 24.1%,19.4% respectively; chloride penetration effects the bearing capacity of the components less.

References:

[1] Mehta P K.Concrete in the marine environment[M].London,UK:Elsevier Applied Science,1991.
[2]Richardson A,Coventry K,Bacon J.Freeze/thaw durability of concrete with recycled demolition aggregate compared to virgin aggregate concrete[J].Journal of Cleaner Production,2011,19(2-3):272-277.
[3]Hazaree C,Ceylan H,Wang Kejin.Influences of mixture composition on properties and freeze-thaw resistance of RCC[J].Construction and Building Materials,2011,25(1):313-319.
[4]Kevern J T,Wang K,Schaefer V R.Effect of coarse aggregate on the freeze-thaw durability of pervious concrete[J].Journal of Materials in Civil Engineering,2010,22(5):469-475.
[5]冀晓东,宋玉普.冻融循环后光圆钢筋与混凝土粘结性能退化机理研究[J].建筑结构学报,2011,32(1):70-74.
Ji Xiaodong,Song Yupu.Mechanism of bond degradation between concrete and plain steel bar after freezing and thawing[J].Journal of Building Structures,2011,32(1):70-74.
[6]Haddad R H,Numayr K S.Effect of alkali-silica reaction and freezing and thawing action on concrete-steel bond[J].Construction and Building Materials,2007,21(2):428-435.
[7]覃丽坤,宋玉普,于长江,等.双轴压混凝土在冻融循环后的力学性能及其破坏准则[J].工程力学,2004,21(2):188-193.
Qin Likun,Song Yupu,Yu Changjiang,et al.Mechanical property and failure criterion for concrete under biaxial compressive stresses after cyclic freezing and thawing[J].Engineering Mechanics,2004,21(2):188-193.
[8]刁波,孙洋,马彬.混合侵蚀和冻融交替作用下持续承载钢筋混凝土梁试验[J].建筑结构学报,2009,30(S2):281-286.
Diao Bo,Sun Yang,Ma Bin.Experiment of persistent loading reinforced concrete beams under alternative actions of a mixed aggressive solution and freeze-thaw cycles[J].Journal of Building Structures,2009,30(S2):281-286.
[9]袁迎曙,贾福萍,蔡跃.锈蚀钢筋混凝土梁的结构性能退化模型[J].土木工程学报,2001,34(3):47-52,96.
Yuan Yingshu,Jia Fuping,Cai Yue.The structural behavior deterioration model for corroded reinforced concrete beams[J].China Civil Engineering Journal,2001,34(3):47-52,96.
[10]范进,董福兴.疲劳荷载下钢筋锈蚀混凝土构件粘结性能试验研究[J].南京理工大学学报,2009,33(6):734-738.
Fan Jin,Dong Fuxing.Bond-slip fatigue experimental study on corroded reinforcement concrete members under cyclic loading[J].Journal of Nanjing University of Science and Technology,2009,33(6):734-738.
[11]李琮琦,葛文杰,曹大富.预应力筋应力腐蚀后预应力混凝土梁受力性能研究[J].南京理工大学学报,2014,38(6):811-817.
Li Congqi,Ge Wenjie,Cao Dafu.Mechanical behaviors of prestressed concrete beams after stress corrosion of prestressed reinforcement[J].Journal of Nanjing University of Science and Technology,2014,38(6):811-817.
[12]朱江.预应力混凝土梁在冻融循环后的受力性能研究[D].扬州:扬州大学建筑科学与工程学院,2006.
[13]徐荣.预应力混凝土梁在冻融循环和氯离子腐蚀后受力性能研究[D].扬州:扬州大学建筑科学与工程学院,2007.
[14]GB 50010-2010,混凝土结构设计规范[S].
[15]混凝土研究协会.混凝土耐久性研究与工程应用手册[M].北京:中国科技文化出版社,2005.
[16]GB/T50082-2009,普通混凝土长期性能和耐久性能试验方法[S].
[17]张鸿雁.混凝土抗冻耐久性研究[D].包头:内蒙古科技大学建筑与土木工程学院,2009:18.

Memo

Memo:
-
Last Update: 2015-12-31