|Table of Contents|

Wrapper feature selection algorithm based on MA-LSSVM

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2016年01期
Page:
10-
Research Field:
Publishing date:

Info

Title:
Wrapper feature selection algorithm based on MA-LSSVM
Author(s):
Lin QiZhang HongLi Qianmu
School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China
Keywords:
feature selection memetic algorithm least squares support vector machine high dimensional small sample data machine learning global search local search
PACS:
TP18
DOI:
-
Abstract:
To improve the feature selection problem of the high dimensional small sample data,this paper combines memetic algorithm(MA)and least squares support vector machine(LS-SVM)to design a wrapper feature selection method(MA-LSSVM).The solving strategy of the proposed method is composed by global search and local search,which utilizes the speciality of being easy to search optimal solution to construct classifiers and to regard classification accuracy as the main component of memetic algorithm fitness function in the optimization process.The experimental results demonstrate that the MA-LSSVM can be more efficient and stable to obtain features larger contribution to the classification precision,reducing the data dimension and improving the classification efficiency.

References:

[1] Saeys Y,Inza I,Larra?aga P.A review of feature selection techniques in bioinformatics[J].Bioinformatics,2007,23(19):2507-2517.
[2]申晓宁,李涛,张敏,等.一种基于模糊逻辑引入偏好信息的多目标遗传算法[J].南京理工大学学报,2011,35(2):245-251.

Shen Xiaoning,Li Tao,Zhang Min,et al.Multi-objective optimization genetic algorithm incorporating preference information based on fuzzy logic[J].Journal of Nanjing University of Science and Technology,2011,35(2):245-251.
[3]汤可宗,李慧颖,李娟,等.一种求解复杂优化问题的改进粒子群优化算法[J].南京理工大学学报,2015,39(4):386-391.
Tang Kezong,Li Huiying,Li Juan,et al.Improved particle swarm optimization algorithm for solving complex optimization problems[J].Journal of Nanjing University of Science and Technology,2015,39(4):386-391.
[4]Li L,Weinberg C R,Darden T A,et al.Gene selection for sample classification based on gene expression data:Study of sensitivity to choice of parameters of the GA/KNN method[J].Bioinformatics,2001,17(12):1131-1142.
[5]Huang Chenglung,Dun Jianfan.A distributed PSO-SVM hybrid system with feature selection and parameter optimization[J].Applied Soft Computing,2008,8(4):1381-1391.
[6]Neri F,Cotta C.Memetic algorithms and memetic computing optimization:A literature review[J].Swarm and Evolutionary Computation,2012,2:1-14.
[7]余正涛,邹俊杰,赵兴,等.基于主动学习的最小二乘支持向量机稀疏化[J].南京理工大学学报,2012,36(1):12-17.
Yu Zhengtao,Zou Junjie,Zhao Xing,et al.Sparseness of least squares support vector machines based on active learning[J].Journal of Nanjing University of Science and Technology,2012,36(1):12-17.
[8]武志峰,黄厚宽,赵翔,等.二进制编码差异演化算法在Agent联盟形成中的应用[J].计算机研究与发展,2008,45(5):848-852.
Wu Zhifeng,Huang Houkuan,Zhao Xiang,et al.Binary encoding difference evolution algorithm is applied in the course of forming Agent union[J].Journal of Computer Research and Development,2008,45(5):848-852.
[9]孙艳丰.基于遗传算法和禁忌搜索算法的混合策略及其应用[J].北京工业大学学报,2006,32(3):258-262.
Sun Yanfeng.Hybrid strategy based on genetic algorithm and tabu search algorithm and its application[J].Journal of Beijing University of Technology,2006,32(3):258-262.
[10]Tao Gong,Tuson A L.Differential evolution for binary encoding[M].Soft Computing in Industrial Applications.Berlin:Springer Berlin Heidelberg,2007:251-262.
[11]李光,吴祈宗.基于结论一致的综合评价数据标准化研究[J].数学的实践与认识,2011,41(3):72-77.
Li Guang,Wu Xizong.Research on data standardization in comprehensive evaluation based on consistent result[J].Mathematics in Practice and Theory,2011,41(3):72-77.
[12]刘罡,李元香,郑昊,等.保存基因的2-Opt一般反向差分演化算法[J].小型微型计算机系统,2012,33(4):789-794.
Liu Gang,Li Yuanxiang,Zheng Hao,et al.Save the gene 2-Opt general inverse differential evolution algorithm[J].Small Microcomputer System,2012,33(4):789-794.
[13]郭亚宁,冯莎莎.基于决策树方法的数据挖掘分析[J].软件导刊,2010,09(9):103-105.
Guo Yaning,Feng Shasha.Analysis of data mining based on decision tree algorithm[J].Soft Ware Guide,2010,09(9):103-105.
[14]李建更,高志坤.随机森林针对小样本数据类权重设置[J].计算机工程与应用,2009,45(26):131-134.
Li Jiangeng,Gao Zhikun.Setting of class weights in random forest for small-sample data[J].Computer Engineering and Applications,2009,45(26):131-134.
[15]李云.稳定的特征选择研究[J].微型机与应用,2012,31(15):1-2.
Li Yun.Research on stable feature selection[J].Microcomputer & Its Applications,2012,31(15):1-2.

Memo

Memo:
-
Last Update: 2016-02-29