|Table of Contents|

Multi-hop localization algorithm based on continuum regression for wireless sensor network

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2016年02期
Page:
183-
Research Field:
Publishing date:

Info

Title:
Multi-hop localization algorithm based on continuum regression for wireless sensor network
Author(s):
Li Ming1Qian Huanyan1Xu Jiang2
1.School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China; 2.School of Computer Science and Engineering,Changshu Institute of Technology,Changshu 215500,China
Keywords:
wireless sensor network localization anisotropy continuum regression
PACS:
TP393.17
DOI:
10.14177/j.cnki.32-1397n.2016.40.02.009
Abstract:
In order to overcome the problem that the traditional multi-hop localization algorithm is vulnerable to the network anisotropy effects leading positioning performance unstable,a mapping between the number of hops and the Euclidean distance is constructed to model the positioning process as a continuum regression.The theoretical analysis and practical results show that the improved algorithm can solve heteroscedasticity problems and improve the positioning accuracy with avoiding the influence of anisotropy on the algorithm performance network topology,and has the less calculation cost and parameters,thus it is suitable for the node uneven distribution of wireless sensor networks with high engineering value.

References:

[1] 程龙,王岩.无线传感器网络室内定位与网络修复方法研究[M].沈阳:东北大学出版社,2015:1-20.
[2]杨铮,吴陈沭,刘云浩.位置计算:无线网络定位与可定位性[M].北京:清华大学出版社,2014:3-18.
[3]魏祥麟,胡永扬,王晓波,等.基于度分布的多跳无线网络干扰节点部署方法[J].南京理工大学学报,2015,39(5):590-595.
Wei Xianglin,Hu Yongyang,Wang Xiaobo,et al.Jammer deployment in multi-hop wireless network based on degree distribution[J].Journal of Nanjing University of Science and Technology,2015,39(5):590-595.
[4]王艳,唐秀芳.基于昆虫协作机理的分布式无线传感器网络节能方法[J].南京理工大学学报,2013,37(6):826-832.
Wang Yan,Tang Xiufang.Energy-saving method based on insects-collaboration mechanism for distributed wireless sensor network[J].Journal of Nanjing University of Science and Technology,2013,37(6):826-832.
[5]Stephan Sand,Armin Dammann,Christian Mensing.Positioning in wireless communications systems[M].Chichester,UK:Wiley,2014:1-20.
[6]张迎胜,单志龙.线性回归在无线传感器网络定位中的应用研究[J].小型微型计算机系统,2014,35(7):1500-1504.
Zhang Yingsheng,Shan Zhilong.Research on linear regression applied to localization algorithm for wireless sensor networks[J].Journal of Chinese Computer Systems,2014,35(7):1500-1504.
[7]CamLy Nguyen,Orestis Georgiou,Yusuke Doi.Maximum likelihood based multihop localization in wireless sensor networks[C]//2015 IEEE International Conference on Communications(ICC).London,UK:IEEE,2015:6663-6668.
[8]Li B,He Y,Guo F.A novel localization algorithm based on isomap and partial least squares for wireless sensor networks[J].Instrumentation and Measurement,IEEE Transactions on,2013,62(2):304-314.
[9]赵景堂,杜国明,李秀海.基于总体最小二乘法的二维坐标转换方法[J].黑龙江工程学院学报,2015,29(1):21-22.
Zhao Jingtang,Du Guoming,Li Xiuhai.A study of two dimensional coordinate transformation based on total least squares[J].Journal of Heilongjiang Institute of Technology,2015,29(1):21-22.
[10]魏叶华,李仁发,罗娟,等.基于支持向量回归的无线传感器网络定位算法[J].通信学报,2009,30(10):44-50.
Wei Yehua,Li Renfa,Luo Juan,et al.Localization algorithm based on support vector regression for wirless sensor networks[J].Journal on Communications,2009,30(10):44-50.
[11]Shai Shalev-Shwartz,Yoram Singer,Nathan Srebro.Pegasos:Primal estimated sub-gradient solver for SVM[J].Mathematical Programming,2011,127(1):3-30.
[12]Lu Y,Dhillon P S,Ungar D F L.Faster ridge regression via the subsampled randomized hadamard transform[C]//Proceedings of the Neural Information Processing Systems(NIPS)Conference.Lake Tahoe,US:NIPS,2013:1-9.

Memo

Memo:
-
Last Update: 2016-04-30