|Table of Contents|

VM migration scheduling method for load balance

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2016年02期
Page:
244-
Research Field:
Publishing date:

Info

Title:
VM migration scheduling method for load balance
Author(s):
Chen HaoGuo YajuanHuang Wei
Jiangsu Electric Power Company Research Institute,Nanjing 210036,China
Keywords:
migration scheduling simulated annealing load balance virtual machine placement
PACS:
TP301
DOI:
10.14177/j.cnki.32-1397n.2016.40.02.018
Abstract:
Virtual machine(VM)dynamic migration plays a key role in a virtualized computing environment for load balance,green energy saving,online maintenance,proactive fault tolerance and flexible resource configuration.To solve the issues of concurrency,migration object choice and migration path optimization in the case of multi VM migrations,a VM migration scheduling method with the goal of load balance is proposed here.The method first discovers physical machines with a high load and selects VMs hosted on these unbalanced physical machines as migration candidates.A simulated annealing algorithm is applied to get a optimal VM placement solution.Finally,a path exchange policy is designed to optimize the migration path.Experimental results show that the method can improve the number of concurrent migrating VMs to reduce the total migration completion time and ensure the load balance.

References:

[1] Clark C,Fraser K,Hand S,et al.Live migration of virtual machines[C]//NSDI'05 Proceedings of the 2nd Conference on Symposium on Networked Systems Design & Implementation.Berkeley,US:USENIX Association Berkeley,2005:273-286.
[2]常德成,徐高潮.虚拟机动态迁移方法[J].计算机应用研究,2013,30(4):971-976.
Chang Decheng,Xu Gaochao.Live virtual machine migration algorithms[J].Application Research of Computers,2013,30(4):971-976.
[3]裴养,吴杰,王鑫.基于粒子群优化算法的虚拟机放置策略[J].计算机工程,2012,38(16):291-292.
Pei Yang,Wu Jie,Wang Xin.Virtual machine placement strategy based on particle swarm optimization algorithm[J].Computer Engineering,2012,38(16):291-292.
[4]李强,郝沁汾,肖利民,等.云计算中虚拟机放置的自适应管理与多目标优化[J].计算机学报,2011,34(12):2253-2264.
Li Qiang,Hao Qinfen,Xiao Limin,et al.Adaptive management and multi-objective optimization for virtual machine placement in cloud computing[J].Chinese Journal of Computers,2011,34(12):2253-2264.
[5]Xu J,Fortes J.Multi objective virtual machine placement in virtualized data center environments[C]//Proceedings of 2010 IEEE/ACM International Conference on Green Computing and Communications.Washington D C,US:IEEE Computer Society,2010:179-188.
[6]魏亮,黄韬,陈建亚,等.基于工作负载预测的虚拟机整合算法[J].电子与信息学报,2013,35(6):1271-1276.
Wei Liang,Huang Tao,Chen Jianya,et al.Workload prediction-based algorithm for consolidation of virtual machines[J].Journal of Electronics & Information Technology,2013,35(6):1271-1276.
[7]潘飞,蒋从锋,徐向华,等.负载相关的虚拟机放置策略[J].小型微型计算机系统,2013,34(3):520-524.
Pan Fei,Jiang Congfeng,Xu Xianghua,et al.Placement strategy of virtual machines based on workload characteristics[J].Journal of Chinese Computer Systems,2013,34(3):520-524.
[8]孙冬冬,柳青,武旖旎.面向负载均衡的自主式虚拟机动态迁移框架[J].计算机科学,2014,41(4):80-85.
Sun Dongdong,Liu Qing,Wu Yini.Load balancing-oritented autonomous live migration framework for virtual machine[J].Computer Science,2014,41(4):80-85.
[9]Corana A,Marchesi M,Martini C,et al.Minimizing multimodal functions of continuous variables with the simulated annealing algorithm[J].ACM Transactions on Mathematical Software,1987,13(3):262-280.

Memo

Memo:
-
Last Update: 2016-04-30