|Table of Contents|

Segmentation of adherent cell image based on iterative erosion

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2016年03期
Page:
285-
Research Field:
Publishing date:

Info

Title:
Segmentation of adherent cell image based on iterative erosion
Author(s):
Wang XinHu YangyangYang Huizhong
Key Laboratory of Advanced Process Control for Light Industry of Ministry of Education, Jiangnan University,Wuxi 214122,China
Keywords:
iterative erosion adherent cells image segmentation microscopic cell images mathematical morphology operation watershed segmentation cell seed points distance transform method limit corrosion method
PACS:
TP274
DOI:
10.14177/j.cnki.32-1397n.2016.40.03.006
Abstract:
To segment microscopic adherent cell images,a new iterative erosion method is presented based on mathematical morphology operation.Iterative corrosion is performed on a binary cell image to generate a cell seed point image.Cell segmentation boundaries are extracted by watershed segmentation,and a final segmented image is obtained.Cell seed points are kept in every corrosion image to avoid deleting the cell seed points in error,and reliable prior information is provided for the subsequent marked watershed segmentation.Experiments show that the algorithm can relieve the over-segmentation problem of the distance transform method and the under-segmentation problem of the limit corrosion method.

References:

[1] 赵欣欣.生物组织显微图像中的细胞计数方法[D].武汉:华中科技大学生物医学工程系,2012.
[2]韦冬冬,赵豫红.基于凹点匹配的重叠图像分割算法[J].计算机与应用化学,2010,27(1):99-102.
Wei Dongdong,Zhao Yuhong.An image segment algorithm for overlapped particles based on concave points matching[J].Computers and Applied Chemistry,2010,27(1):99-102.
[3]王娜.颗粒图像分割与分析方法研究[D].成都:电子科技大学电子工程学院,2009.
[4]Di Ruberto C,Dempster A,Khan S,et al.Analysis of infected blood cell images using morphological operators[J].Image and Vision Computing,2002,20(2):133-146.
[5]刘相滨,邹北骥,孙家广.基于边界跟踪的快速欧氏距离变换算法[J].计算机学报,2006,29(2):317-323. Liu Xiangbin,Zou Beiji,Sun Jiaguang.Fast Euclidean distance transform based on contour tracking[J].Chinese Journal of Computers,2006,29(2):317-323.
[6]李伟.基于模糊C均值聚类的图像分割算法研究[D].哈尔滨:哈尔滨工程大学信息与通信工程学院,2013.
[7]于广婷.基于水平集的图像分割方法研究[D].成都:西南交通大学机械工程学院,2014.
[8]黄文明,陈庆全,陆荣.一种改进的重叠细胞图像分割研究[J].计算机工程与应用,2009,45(26):163-165.
Huang Wenming,Chen Qingquan,Lu Rong.Improved research for overlapping cell images segmentation[J].Computer Engineering and Applications,2009,45(26):163-165.
[9]张颖.对粘连细胞图像的计数及分割研究[D].南京:南京理工大学计算机科学与工程学院,2009.
[10]陈永亮.灰度图像的直方图均衡化处理研究[D].合肥:安徽大学计算机科学与技术学院,2014.
[11]倪麟.基于Otsu理论的图像分割算法的研究[D].重庆:重庆大学数学与统计学院,2013.
[12]肖启芝,许凯,关泽群,等.一种形态学滤波结构元的选择方法[J].计算机工程与应用,2007,43(21):49-51.
Xiao Qizhi,Xu Kai,Guan Zequn,et al.Structuring elements selection in morphology filter[J].Computer Engineering and Applications,2007,43(21):49-51.
[13]Vincent L,Soille P.Watersheds in digital spaces:An efficient algorithm based on immersion simulations[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,13(6):583-598.
[14]陈家新,王纪刚.一种改进的医学图像分水岭分割算法[J].计算机应用研究,2013,30(8):2557-2560.
Chen Jiaxin,Wang Jigang.Improved watershed segmentation algorithm for medical image[J].Application Research of Computers,2013,30(8):2557-2560.
[15]Ljosa V,Sokolnicki K L,Carpenter A E.Annotated high-throughput microscopy image sets for validation[J].Nature Methods,2012,9(7):637-637.

Memo

Memo:
-
Last Update: 2016-06-30