|Table of Contents|

Short-term wind power forecasting model based on spatial correlation and wavelet-neural network

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2016年03期
Page:
360-
Research Field:
Publishing date:

Info

Title:
Short-term wind power forecasting model based on spatial correlation and wavelet-neural network
Author(s):
Xu Meimei1Ren Zuyi2Chen Jianguo1Ni Jianjun2Zhang Junfang3 Ning Nan4Zhao Jiwei4
1.Electric Power Research Institute of Guizhou Power Grid Co.,Ltd.,Guiyang 550002,China; 2.NR Electric Co.,Ltd.,Nanjing 211102,China; 3.School of Automation,Nanjing University of Science and Technology,Nanjing 210094,China; 4.Liupanshui Power Supply Bu
Keywords:
spatial correlation wavelet-neural network wind power forecasting wavelet basis function back propagation neural network wind energy utilization
PACS:
TM614
DOI:
10.14177/j.cnki.32-1397n.2016.40.03.019
Abstract:
In order to predict wind power accurately,a prediction model is proposed here.The inherent law of wind speed time series is extracted by the wind speed spatial correlation.The wavelet basis function is transferred into the neutron nodes of the neural network as the transfer function,and the wind power is predicted.The short-term wind power forecasting examples of two adjacent wind farms are simulated and analyzed.The simulation results show that compared with the back propagation neural network(BPNN)and wavelet-neural network(WNN)prediction models,the average percentage error of SC-WNN prediction model is reduced by 0.164 3.

References:

[1] 孟令斌,朱凤龙.混合电源及功率预测系统在风电并网中的应用[J].电力系统保护与控制,2015,43(13):79-85.
Meng Lingbin,Zhu Fenglong.Applications of the mixing power and power forecasting system in wind power[J].Power System Protection and Control,2015,43(13):79-85.
[2]冯凯,应展烽,吴军基,等.基于小波包变换和峰式马尔科夫链的风速短期预测[J].南京理工大学学报,2014,38(5):639-643,657.
Feng Kai,Ying Zhanfeng,Wu Junji,et al.Short-term wind speed forecast based on wavelet packet decomposition and peak-type Markov chain[J].Journal of Nanjing University of Science and Technology,2014,38(5):639-643,657.
[3]周松林,茆美琴,苏建徽.风电功率短期预测及非参数区间估计[J].中国电机工程学报,2011,31(25):10-16.
Zhou Songlin,Mao Meiqin,Su Jianhui.Short-term forecasting of wind power and non-parametric confidence interval estimation[J].Proceedings of the CSEE,2011,31(25):10-16.
[4]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报,2008,28(34):118-123.
Fan Gaofeng,Wang Weisheng,Liu Chun,et al.Wind power forecasting based on artificial neural networks[J].Proceedings of the CSEE,2008,28(34):118-123.
[5]何东,刘瑞叶.基于主成分分析的神经网络动态集成风功率超短期预测[J].电力系统保护与控制,2013,41(4):50-54.
He Dong,Liu Ruiye.Ultra-short-term wind power prediction using ANN ensemble based on the principal components analysis[J].Power System Protection and Control,2013,41(4):50-54.
[6]孟安波,陈育成.基于虚拟预测与小波包变换的风电功率组合预测[J].电力系统保护与控制,2014,42(3):71-76.
Meng Anbo,Chen Yucheng.Wind power combination forecasting based on wavelet packet transform and virtual forecasting method[J].Power System Protection and Control,2014,42(3):71-76.
[7]张学清,梁军,张熙,等.基于样本熵和极端学习机的超短期风电功率组合预测模型[J].中国电机工程学报,2013,33(25):33-40.
Zhang Xueqing,Liang Jun,Zhang Xi,et al.Combined model for ultra short-term wind power prediction based on sample entropy and extreme learning machine[J].Proceedings of the CSEE,2013,33(25):33-40.
[8]张露,卢继平,梅亦蕾,等.基于不同优化准则的风电功率预测[J].电力自动化设备,2015,35(5):139-145.
Zhang Lu,Lu Jiping,Mei Yilei,et al.Wind power forecasting based on different optimization criterions[J].Electric Power Automation Equipment,2015,35(5):139-145.
[9]李文良,卫志农,孙国强,等.基于改进空间相关法和径向基神经网络的风电场短期风速分时预测模型[J].电力自动化设备,2009,29(6):89-92.
Li Wenliang,Wei Zhinong,Sun Guoqiang,et al.Multi-interval wind speed forecast model based on improved spatial correlation and RBF neural network[J].Electric Power Automation Equipment,2009,29(6):89-92.
[10]Bechrakis D A,Sparis P D.Correlation of wind speed between neighboring measuring stations[J].IEEE Trans on Energy Conversion,2004,19(2):400-406.
[11]Sahin A D,Sen Z.Wind energy directional spatial correlation functions and application for prediction[J].Wind Engineering,2000,24(3):223-231.
[12]潘玉民,邓永红,张全柱.小波神经网络模型的确定性预测及应用[J].计算机应用,2013,33(4):1001-1005.
Pan Yumin,Deng Yonghong,Zhang Quanzhu.Deterministic prediction of wavelet neural network model and its application[J].Journal of Computer Applications,2013,33(4):1001-1005.
[13]陈妮亚,钱政,孟晓风,等.基于空间相关法的风电场风速多步预测模型[J].电工技术学报,2013,28(5):15-21.
Chen Niya,Qian Zheng,Meng Xiaofeng,et al.Multi-step ahead wind speed forecasting model based on spatial correlation and support vector machine[J].Transactions of China Electrotechnical Society,2013,28(5):15-21.
[14]叶林,赵永宁.基于空间相关性的风电功率预测研究综述[J].电力系统自动化,2014,38(14):126-135.
Ye Lin,Zhao Yongning.A review on wind power prediction based on spatial correlation approach[J].Automation of Electric Power Systems,2014,38(14):126-135.
[15]Bilgili M,Sahin B,Yasar A.Application of artificial neural networks for the wind speed prediction of target station using reference stations data[J].Renewable Energy,2007,32(14):2350-2360.
[16]Foley A M,Leahy P G,Marvuglia A,et al.Current methods and advances in forecasting of wind power generation[J].Renewable Energy,2012,37(1):1-8.

Memo

Memo:
-
Last Update: 2016-06-30