|Table of Contents|

Data acquisition method based on compressive sensing for automatic ammunition loading system

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2016年05期
Page:
544-
Research Field:
Publishing date:

Info

Title:
Data acquisition method based on compressive sensing for automatic ammunition loading system
Author(s):
Liu XiHou BaolinYao Laipeng
School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China
Keywords:
compressive sensing ammunition loading orthogonal matching pursuit data reconstruction
PACS:
TP273
DOI:
10.14177/j.cnki.32-1397n.2016.40.05.007
Abstract:
The embedded fault diagnosis machine for the automatic ammunition loading system monitors the system realtimely,collects the data by using sensors,analyzes the data,detects and isolates faults,and predicts the health of the system in the future.In order to solve the problem that the data acquisition and storage of the traditional embedded fault diagnosis machine are reducted under the severe environment,a data acquisition method based on the compressive sensing theory is proposed.The data of the coordinated action angular velocity is sampled by the down-sample mode.By using the compressive sensing theory,the data is reconstructed by the orthogonal matching pursuit(OMP)algorithm.The result shows that the OMP algorithm can recover the original data accurately,improve the accuracy,and guarantee the correctness of diagnosis and prognosis of the fault diagnosis machine.

References:

[1] George Vachtsevanos,Frank L L,Michael R,et al.工程系统中的智能故障诊断与预测[M].北京:国防工业出版社,2013.
[2]Candes E J.Compressive sampling[C]//Proceedings of the International Congress of Mathematicians.Pasadena,US:California Institute of Technology,2006:1433-1452.
[3]张格森.压缩传感理论及若干应用技术研究[D].哈尔滨:哈尔滨工程大学信通学院,2012.
[4]Candes E,Romberg J K,Tao T.Stable signal recovery from incomplete and inaccurate measurements[J].Communications on Pure and Applied Mathematics,2006,59(8):1207-1223.
[5]Candes E,Tao T.Decoding by linear programming[J].IEEE Transactions on Information Theory,2004,34(4):435-443.
[6]史耀亮.毫米波雷达近程平面扫描散射成像算法研究[D].南京:南京理工大学电子工程与光电技术学院,2015.
[7]Baraniuk R G.Compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
[8]Donoho D.For most large underdetermined systems of linear equations,the minimal L1 norm solution is also the sparsest solution[J].Communications on Pure and Applied Mathematics,2004,59(6):797-829.
[9]Needell D,Tropp J A.CoSaMP:Iterative signal recovery from incomplete and inaccurate samples[R].Pasadena,US:California Institute of Technology,2008.
[10]汪雄良,冉承其,王正明.基于紧致字典的基追踪方法在SAR图像超分辨中的应用[J].电子学报,2006,6(6):996-1001.
Wang Xiongliang,Ran Chengqi,Wang Zhengming.Super-resolution processing of SAR images by basis pursuit method based on compacted dictionary[J].Acta Electronica Sinica,2006,6(6):996-1001.
[11]杨海蓉,张成,丁大为,等.压缩传感理论与重构算法[J].电子学报,2011,39(1):142-148.
Yang Hairong,Zhang Cheng,Ding Dawei,et al.The theory of compressed sensing and reconstruction algorithm[J].Acta Electronica Sinica,2011,39(1):142-148.
[12]郭永红,杨毅彬.一种稀疏自适应的正交互补匹配追踪算法[J].计算机工程与应用,2013,49(6):144-146.
Guo Yonghong,Yang Yibin.Sparsity adaptive orthogonal complementary matching pursuit algorithm[J].Computer Engineering and Applications,2013,49(6):144-146.
[13]刘弘远.基于压缩感知重建算法的一些改进[D].武汉:华中科技大学数学与统计学院,2013.

Memo

Memo:
-
Last Update: 2016-10-30