|Table of Contents|

Automatic recognition of heart sound signal based on Gauss mixture model

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2016年05期
Page:
560-
Research Field:
Publishing date:

Info

Title:
Automatic recognition of heart sound signal based on Gauss mixture model
Author(s):
Xiang Changsheng
Department of Computer and Communication,Hunan Institute of Engineering,Xiangtan 411104,China
Keywords:
heart sound signals recognition models wavelet analysis Gauss mixture models
PACS:
TP391
DOI:
10.14177/j.cnki.32-1397n.2016.40.05.010
Abstract:
In order to improve the accuracy of automatic recognition of heart sound signals,a new method based on Gauss mixture model is proposed here.The heart sound signal is collected and processed and the Mel frequency spectrum coefficient is abstracted as the features of the heart sound signal.Finally,the heart sound signal is automatically performed by the Gauss model,and its performance is tested and analyzed by simulation experiments.Experimental results show that the proposed method can describe the characteristics of heart sounds,its recognition rate is greatly improved compared with other methods,and it can be used in the diagnosis of cardiac diseases.

References:

[1] 朱冰莲,杨磊.心音信号的短时傅立叶变换分析[J].重庆大学学报(自然科学版),2004,27(8):83-85.
Zhu Binglian,Yang Lei.Short-time fourier transform analysis of the phonocardiogram signal[J].Journal of Chongqing University,2004,27(8):83-85.
[2]侯海良,罗良才,成运.基于盲源提取和希尔伯特变换的心音包络提取[J].计算机仿真,2012,29(10):215-218.
Hou Hailiang,Luo Liangcai,Cheng Yun.Envelope extraction of heart sound based on blind source extraction and Hilbert transform[J].Computer Simulation,2012,29(10):215-218.
[3]李战明,韩阳,韦哲,等.基于S变换的心音信号特征提取[J].振动与冲击,2012,31(21):179-183.
Li Zhanming,Han Yang,Wei Zhe,et al.Heart sound feature extraction based on S transformation[J].Journal of Vibration and Shock,2012,31(21):179-183.
[4]李彬彬,袁中凡,杨春生.改进的HTT算法及在心音信号分析中的应用[J].四川大学学报(工程科学版),2007,39(4):160-163.
Li Binbin,Yuan Zhongfan,Yang Chunsheng.The improved HHT algorithm and its application in the heart sound signal analysis[J].Journal of Sichuan University(Engineer Science Edition),2007,39(4):160-163.
[5]丁浩,黄志尧,李海青.基于高阶统计量和小波变换的差压信号分析[J].浙江大学学报(工学版),2006,40(4):714-718.
Ding Hao,Huang Zhiyao,Li Haiqing.Analysis of differential pressure signal based on wavelet transform and higher-order statistics[J].Journal of Zhejiang University(Engineering Science),2006,40(4):714-718.
[6]郭兴明,汤丽萍.基于小波变换和样本熵的心音识别研究[J].计算机应用研究,2010,27(12):4555-4557.
Guo Xingming,Tang Liping.Heart sound recognition based on wavelet transform and SampEn[J].Application Research of Computers,2010,27(12):4555-4557.
[7]陈新华,成谢锋.一种改进型综合去噪算法在心音信号预处理上的研究[J].南京邮电大学学报(自然科学版),2010,30(6):96-100.
Chen Xinhua,Cheng Xiefeng.An improved compositive algorithm for PCG signals denoising[J].Journal of Nanjing University of Posts and Telecommunications(Natural Science),2010,30(6):96-100.
[8]全雪峰,黄文海.基于小波分析和概率神经网络的心音诊断研究[J].工业控制计算机,2010,23(8):79-80.
Quan Xuefeng,Huang Wenhai.Heart sound diagnosis based on wavelet analysis and probabilistic neural network[J].Industrial Personal Computer,2010,23(8):79-80.
[9]林庆,徐柱,王士同,等.HSV自适应混合高斯模型的运动目标检测[J].计算机科学,2010,37(10):254-256.
Lin Qing,Xu Zhu,Wang Shitong,et al.Moving objects detection of adaptive Gaussian mixture models on HSV[J].Computer Science,2010,37(10):254-256.
[10]郭兴明,丁晓蓉,钟丽莎,等.小波包与混沌集成的心音特征提取及分类识别[J].仪器仪表学报,2012,33(9):1398-1404.
Guo Xingming,Ding Xiaorong,Zhong Lisha,et al.Heart sound feature extraction and classification based on integration of wavelet packet analysis and chaos theory[J].Chinese Journal of Scientific Instrument,2012,33(9):1398-1404.
[11]李桥,赵玲,邵庆余,等.应用小波变换进行心音三维时频分析的研究[J].中国医学物理学杂志,2001,18(2):100-112.
Li Qiao,Zhao Ling,Shao Qingyu,et al.The study of three-dimensional phonocardiogram using wavelet transforms method[J].Chinese Journal of Medical Physics,2001,18(2):100-112.
[12]Koch K R.Robust estimation by expectation maximization algorithm[J].Journal of Geodesy,2013,87(2):107-116.
[13]黄林洲,郭兴明,丁晓蓉.EMD 近似熵结合支持向量机的心音信号识别研究[J].振动与冲击,2012,31(19):21-25.
Huang Linzhou,Guo Xingming,Ding Xiaorong.Heart sound recognition based on EMD approximate entropy and SVM[J].Journal of Vibration and Shock,2012,31(19):21-25.

Memo

Memo:
-
Last Update: 2016-10-30