|Table of Contents|

Modeling analysis of single-phase PWM rectifier based on Caputo definition

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2016年05期
Page:
581-
Research Field:
Publishing date:

Info

Title:
Modeling analysis of single-phase PWM rectifier based on Caputo definition
Author(s):
Zheng ZhengMa FangjunWei Yanfang
School of Electrical Engineering and Automation,Henan Polytechnic University,Jiaozuo 454000,China
Keywords:
fractional calculus Caputo definition pulse width modulation rectifiers instantaneous power theory
PACS:
TM461
DOI:
10.14177/j.cnki.32-1397n.2016.40.05.013
Abstract:
Taking the single-phase pulse width modulation(PWM)rectifier as the research object,a fractional mathematical model is established here based on the mathematical theory of the Caputo definition of fractional calculus and the fact that the actual inductance and capacitance are the fractional order.By using the instantaneous power theory,the similarities and differences between the fractional order theory modeling and the integer order theory modeling are obtained for the issues of the direct current(DC)capacitor voltage of the alternating current(AC)component,the DC component,and the dynamic response time.A simulation model is builded based on the Matlab/Simulink,and the simulate results show that the DC component value does not change with the capacitance order while the peak value of the AC component and the dynamic response time change respectively.The validity and the necessity of the fractional modeling and the theoretical analysis are verified based on the semi-physical real-time simulation of the RT-lab.

References:

[1] 宋文祥,尹赟.一种基于内模控制的三相电压型PWM整流器控制方法[J].电工技术学报,2012,27(12):94-101.
Song Wenxiang,Yin Yun.A control strategy of three-phase PWM rectifier based on internal model control[J].Transactions of China Electrotechnical Society,2012,27(12):94-101.
[2]曹晓冬,谭国俊,王从刚,等.三电平PWM整流器多模型预测控制方法[J].电工技术学报,2014,29(8):142-150.
Cao Xiaodong,Tan Guojun,Wang Conggang,et al.Research on multi-model predictive control strategy of three-level PWM rectifier[J].Transactions of China Electrotechnical Society,2014,29(8):142-150.
[3]Shahab G,Ahmadreza T,Javad A M.Application of fractional calculus theory to robust controller design for wind turbine generators[J].IEEE Transactions on Energy Conversion(S0885-8969),2014,29(3):780-787.
[4]Petrá I.A note on the fractional-order Chua's system[J].Chaos Solitons Fractals(S0960-0779),2008,38(1):140-147.
[5]Tenreiro Machado J A,Galhano A M S F.Fractional order inductive phenomena based on the skin effect[J].Nonlinear Dynamics(S0924-090X),2012,68(1):107-115.
[6]瞿博,吕征宇.三相电压型PWM 整流器小信号建模及其控制器设计[J].电工技术学报,2010,25(5):103-108.
Qu Bo,Lv Zhengyu.Small-signal modeling and controller design of three-phase voltage source PWM rectifier[J].Transactions of China Electrotechnical Society,2010,25(5):103-108.
[7]刁利杰,张小飞,陈帝伊.分数阶并联RLαCβ电路[J].物理学报,2014,63(3):1-10.
Diao Lijie,Zhang Xiaofei,Chen Diyi.Fractional-order multiple RLαCβ circuit[J].Acta Physica Sinica,2014,63(3):1-10.
[8]王发强,马西奎.基于分数阶微积分的电感电流断续模式下Boost变换器的建模与分析[J].中国科学(技术科学),2013,43(4):368-374.
Wang Faqiang,Ma Xikui.Modeling and simulation analysis of Boost converter in continuous conduction mode operation based on fractional calculus[J].Science China Information Sciences,2013,43(4):368-374.
[9]Goldfain E.Fractional dynamics and the standard model for particle physics[J].Communications in Nonlinear Science and Numerical Simulation(S1007-5704),2008,13(7):1397-1404.
[10]王发强,马西奎.电感电流连续模式下Boost变换器的分数阶建模与仿真分析[J].物理学报,2011,60(7):1-8.
Wang Faqiang,Ma Xikui.Fractional order modeling and simulation analysis of Boost converter in continuous conduction mode operation[J].Acta Physica Sinica,2011,60(7):1-8.
[11]王晓燕,王东风,韩璞.一类分数阶系统的分析及控制器设计[J].信息与控制,2011,40(4):547-552.
Wang Xiaoyan,Wang Dongfeng,Han Pu.Analysis and controller design of a class of fractional-order system[J].Information and Control,2011,40(4):547-552.
[12]武女则.分数阶导数和积分的奇偶性及周期性[J].山东理工大学学报(自然科学版),2013,27(3):51-54.
Wu Nvze.The odd-even and periodic properties of fractional derivative and fractional interal[J].Journal of Shandong University of Technology(Natural Science Edition),2013,27(3):51-54.
[13]Dipanjan S,Debasmita M,Siddhartha S.Effect of initialization on a class of fractional order systems:Experimental verification and dependence on nature of past history and system parameters[J].Circuits,Systems,and Signal Processing(S0278-081X),2013,32(4):1501-1522.
[14]贾红艳,陈增强,薛薇.分数阶Lorenz系统的分析及电路实现[J].物理学报,2013,62(14):1-7.
Jia Hongyan,Chen Zengqiang,Xue Wei.Analysis and circuit implementation for the fractional-order Lorenz system[J].Acta Physica Sinica,2013,62(14):1-7.

Memo

Memo:
-
Last Update: 2016-10-30