|Table of Contents|

Global stability analysis of delayed vector-host epidemic model

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2016年05期
Page:
589-
Research Field:
Publishing date:

Info

Title:
Global stability analysis of delayed vector-host epidemic model
Author(s):
Liu XiangQiu Zhipeng
School of Sciences,Nanjing University of Science and Technology,Nanjing 210094,China
Keywords:
vector-host epidemic models time delay global stability Lyapunov function
PACS:
O175.1
DOI:
10.14177/j.cnki.32-1397n.2016.40.05.014
Abstract:
The global dynamics of a vector-borne epidemical model is investigated incorporating time delays and the nonlinear incidence rate.Application of the suitable Lyapunov function and the Lyapunov-LaSalle's invariance principle shows that the basic reproduction number R0 is the global threshold:if R0≤1,the disease-free equilibrium is globally asymptotically stable,and if R0>1,the system has a unique endemic equilibrium being globally asymptotically stable.

References:

[1] Qiu Zhipeng,Kong Qingkai,Li Xuezhi,et al.The vector-host epidemic model with multiple strains in a patchy environment[J].Journal of Mathmatical Analysis & Applications,2013,405(1):12-36.
[2]Wonham M J,T de-camino Beck,Lewis M A.An epidemiological model for West Nile virus:invasion analysis and control application[J].Royal Society London.Series B,2004,1538(271):501-507.
[3]Bowman C,Gumel A B,Wu J,et al.A mathematical model for assessing control strategies against West Nile virus,[J].Bulletin of Mathematical Biology,2005,67(5):1107-1133.
[4]孔庆凯,邱志鹏,邹云.一类媒介-宿主传染病传播动力学模型分析[J].南京理工大学学报,2012,36(2):304-308.
Kong Qingkai,Qiu Zhipeng,Zou Yun.Dynamics model analysis of vector-host epidemic disease transmission[J].Journal of Nanjing University of Science and Technology,2012,36(2):304-308.
[5]Ruan Shigui,Xiao Dongmei,Beier J C.On the delay Ross-Macdonald model for malaria transmission[J].Bulletin of Mathematical Biology,2008,70(4):1098-1114.
[6]Velasco-Hernandez J X.A model for Chagas disease involving transmission by vectors and blood transfusion[J].Theoretical Population Biology,1994,46(1):1-31.
[7]Shu Hongying,Wang Lin,Wu Jianhong.Global dynamics of nicholson's blowfies equation revisited:on set and termination of nonlinear oscillations[J].Journal of Differential Equations,2013,255(9):2565-2586.
[8]Van Den Driessche P,Watmough J.Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J].Mathematical Biosciences,2002,180(2):29-44.
[9]Kuang Yang.Delay differential equations with applications in population dynamics[M].Boston,US:Academic Press,1993.

Memo

Memo:
-
Last Update: 2016-10-30